Citation: | Y. Yuan, S. Lu, and X. Luo, “A proportional integral controller-enhanced non-negative latent factor analysis model,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 6, pp. 1–14, Jun. 2025. |
[1] |
L. Cheng, M. Xue, Y. Wang, Y. Wang, and Y. Bi, “A robust tracking algorithm based on modified generalized probability data association for wireless sensor network,” IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 2136–2146, Mar. 2022. doi: 10.1109/TIE.2021.3063987
|
[2] |
S. Juneja, K. Kaur, and H. Singh, “An intelligent coverage optimization and link-stability routing for energy efficient wireless sensor network,” Wirel. Netw., vol. 28, no. 2, pp. 705–719, Feb. 2022. doi: 10.1007/s11276-021-02818-5
|
[3] |
Y. Yang, L. Wu, R. Hong, K. Zhang, and M. Wang, “Enhanced graph learning for collaborative filtering via mutual information maximization,” in Proc. 44th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, 2021, pp. 71–80.
|
[4] |
V. L. Gatta, V. Moscato, M. Pennone, M. Postiglione, and G. Sperlí, “Music recommendation via hypergraph embedding,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 7887–7899, 2023. doi: 10.1109/TNNLS.2022.3146968
|
[5] |
M. Yang, Q. Dai, Z. Dong, X. Chen, X. He, and J. Wang, “Top-N recommendation with counterfactual user preference simulation,” in Proc. 30th ACM Int. Conf. Information & Knowledge Management, Queensland, Australia, 2021, pp. 2342–2351.
|
[6] |
W. Liang, Y. Fan, K.-C. Li, D. Zhang, and J. L. Gaudiot, “Secure data storage and recovery in industrial blockchain network environments,” IEEE Trans. Ind. Inf., vol. 16, no. 10, pp. 6543–6552, Oct. 2020. doi: 10.1109/TII.2020.2966069
|
[7] |
J. Kang, Z. Xiong, D. Niyato, P. Wang, D. Ye, and D. I. Kim, “Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks,” IEEE Wirel. Commun. Lett., vol. 8, no. 1, pp. 157–160, Feb. 2018.
|
[8] |
Z. Liang, Y. Rong, C. Li, Y. Zhang, Y. Huang, T. Xu, X. Ding, and J. Huang, “Unsupervised large-scale social network alignment via cross network embedding,” in Proc. 30th ACM Int. Conf. Information & Knowledge Management, Queensland, Australia, 2021, pp. 1008–1017.
|
[9] |
S. Gu, Y. Nojima, H. Ishibuchi, and S. Wang, “A novel classification method from the perspective of fuzzy social networks based on physical and implicit style features of data,” IEEE Trans. Fuzzy Syst., vol. 28, no. 2, pp. 361–375, Feb. 2020. doi: 10.1109/TFUZZ.2019.2906855
|
[10] |
D. Wu, X. Luo, M. Shang, Y. He, G. Wang, and X. Wu, “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 6, pp. 2525–2538, Jun. 2022.
|
[11] |
Y. Yuan, Q. He, X. Luo, and M. Shang, “A multilayered-and-randomized latent factor model for high-dimensional and sparse matrices,” IEEE Trans. Big Data, vol. 8, no. 3, pp. 784–794, Jun. 2022. doi: 10.1109/TBDATA.2020.2988778
|
[12] |
J. Chen, C. Wang, S. Zhou, Q. Shi, J. Chen, Y. Feng, and C. Chen, “Fast adaptively weighted matrix factorization for recommendation with implicit feedback,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, USA, 2020, pp. 3470–3477.
|
[13] |
P. Liu, L. Zhang, and J. A. Gulla, “Multilingual review-aware deep recommender system via aspect-based sentiment analysis,” ACM Trans. Inf. Syst., vol. 39, no. 2, p. 15, Jan, 2021.
|
[14] |
X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
|
[15] |
S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec: Autoencoders meet collaborative filtering,” in Proc. 24th Int. Conf. World Wide Web, New York, USA, 2015, pp. 111–112.
|
[16] |
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web, Perth, Australia, 2017, pp. 173–182.
|
[17] |
P. Li, Z. Wang, Z. Ren, L. Bing, and W. Lam, “Neural rating regression with abstractive tips generation for recommendation,” in Proc. 40th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Shinjuku, Japan, 2017, pp. 345–354.
|
[18] |
B. Shi, J. Chen, H. Chen, W. Lin, J. Yang, Y. Chen, C. Wu, and Z. Huang, “Prediction of recurrent spontaneous abortion using evolutionary machine learning with joint self-adaptive sime mould algorithm,” Comput. Biol. Med., vol. 148, p. 105885, Sep. 2022. doi: 10.1016/j.compbiomed.2022.105885
|
[19] |
Y. Feng, Y. Xu, Q. Hu, S. Krishnamoorthy, and Z. Tang, “Predicting vacant parking space availability zone-wisely: A hybrid deep learning approach,” Complex Intell. Syst., vol. 8, no. 5, pp. 4145–4161, Oct. 2022. doi: 10.1007/s40747-022-00700-1
|
[20] |
C. Chen, R. Zhang, W. Wen, M. Liu, P. Du, Y. Yang, and X. Ruan, “Hybrid 3DMA for multi-user MIMO-VLC,” J. Opt. Commun. Netw., vol. 14, no. 10, pp. 780–791, Oct. 2022. doi: 10.1364/JOCN.468749
|
[21] |
M.-R. Chen, L.-Q. Yang, G.-Q. Zeng, K.-D. Lu, and Y.-Y. Huang, “IFA-EO: An improved firefly algorithm hybridized with extremal optimization for continuous unconstrained optimization problems,” Soft Comput., vol. 27, no. 6, pp. 2943–2964, Mar. 2023. doi: 10.1007/s00500-022-07607-6
|
[22] |
Z. Chen, H. Strange, A. Oliver, E. R. E. Denton, C. Boggis, and R. Zwiggelaar, “Topological modeling and classification of mammographic microcalcification clusters,” IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1203–1214, Apr. 2015. doi: 10.1109/TBME.2014.2385102
|
[23] |
H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “MeLU: Meta-learned user preference estimator for cold-start recommendation,” in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, New York, USA, 2019, pp. 1073–1082.
|
[24] |
J. Deng, J. Guo, and Y. Wang, “A Novel K-medoids clustering recommendation algorithm based on probability distribution for collaborative filtering,” Knowl.-Based Syst., vol. 175, pp. 96–106, Jul. 2019. doi: 10.1016/j.knosys.2019.03.009
|
[25] |
Z. Cui, X. Xu, F. Xue, X. Cai, Y. Cao, W. Zhang, and J. Chen, “Personalized recommendation system based on collaborative filtering for IoT scenarios,” IEEE Trans. Serv. Comput., vol. 13, no. 4, pp. 685–695, Jul–Aug. 2020. doi: 10.1109/TSC.2020.2964552
|
[26] |
Y. Dong, M. Luo, J. Li, D. Cai, and Q. Zheng, “LookCom: Learning optimal network for community detection,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 2, pp. 764–755, Feb. 2022. doi: 10.1109/TKDE.2020.2987784
|
[27] |
D. Wu, Q. He, X. Luo, M. Shang, Y. He, and G. Wang, “A posterior-neighborhood-regularized latent factor model for highly accurate web service QoS prediction,” IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 793–805, Mar.-Apr. 2022. doi: 10.1109/TSC.2019.2961895
|
[28] |
Z. Yang, Y. Zhang, Y. Xiang, W. Yan, and S. Xie, “Non-negative matrix factorization with dual constraints for image clustering,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 7, pp. 2524–2533, Jul. 2020. doi: 10.1109/TSMC.2018.2820084
|
[29] |
C. Kűmmerle and C. M. Verdun, “A scalable second order method for ill-conditioned matrix completion from few samples,” in Proc. 38th Int. Conf. Machine Learning, 2021, pp. 5872–5883.
|
[30] |
Q. Zhang, Y. Zheng, and J. Honorio, “Meta learning for support recovery in high-dimensional precision matrix estimation,” in Proc. 38th Int. Conf. Machine Learning, 2021, pp. 12642–12652.
|
[31] |
D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999. doi: 10.1038/44565
|
[32] |
J.-X. Zhang and T. Chai, “Proportional-integral funnel control of unknown lower-triangular nonlinear systems,” IEEE Trans. Autom. Control, vol. 69, no. 3, pp. 1921–1927, Mar. 2024. doi: 10.1109/TAC.2023.3330900
|
[33] |
D. Zhao, Z. Wang, Q.-L. Han, and G. Wei, “Proportional-integral observer design for uncertain time-delay systems subject to deception attacks: An outlier-resistant approach,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 8, pp. 5152–5164, Aug. 2022. doi: 10.1109/TSMC.2021.3117742
|
[34] |
X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems,” IEEE Trans. Ind. Inf., vol. 10, no. 2, pp. 1273–1284, May 2014. doi: 10.1109/TII.2014.2308433
|
[35] |
Y. Zhong, K. Liu, S. Gao, and X. Luo, “Alternating-direction-method of multipliers-based adaptive nonnegative latent factor analysis,” IEEE Trans. Emerging Top. Comput. Intell., vol. 8, no. 5, pp. 3544–3558, Oct. 2024. doi: 10.1109/TETCI.2024.3420735
|
[36] |
W. Yuan, X. Li, and D. Guan, “Multi-view attributed network embedding using manifold regularization preserving non-negative matrix factorization,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 6, pp. 2563–2571, Jun. 2024. doi: 10.1109/TKDE.2023.3325461
|
[37] |
S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from incomplete ratings using non-negative matrix factorization,” in Proc. SIAM Int. Conf. Data Mining, Bethesda, USA, 2006, pp. 549–553.
|
[38] |
Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm for matrix completion with nonnegative factors,” Front. Math. China, vol. 7, no. 2, pp. 365–384, Apr. 2012. doi: 10.1007/s11464-012-0194-5
|
[39] |
D. Liu, J. Lian, Z. Liu, X. Wang, G. Sun, and X. Xie, “Reinforced anchor knowledge graph generation for news recommendation reasoning,” in Proc. 27th ACM SIGKDD Conf. Knowledge Discovery & Data Mining, New York, USA, 2021, pp. 1055–1065.
|
[40] |
X. Luo, H. Wu, Z. Wang, J. Wang, and D. Meng, “A novel approach to large-scale dynamically weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9756–9773, Dec. 2022. doi: 10.1109/TPAMI.2021.3132503
|
[41] |
M. Li and Y. Song, “An improved non-negative latent factor model for missing data estimation via extragradient-based alternating direction method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 9, pp. 5640–5653, Sep. 2023. doi: 10.1109/TNNLS.2021.3130289
|
[42] |
P. Deng, T. Li, H. Wang, D. Wang, S.-J. Horng, and R. Liu, “Graph regularized sparse non-negative matrix factorization for clustering,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 910–921, Jun. 2023. doi: 10.1109/TCSS.2022.3154030
|
[43] |
W. Li, Q. He, X. Luo, and Z. Wang, “Assimilating second-order information for building non-negative latent factor analysis-based recommenders,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 1, pp. 485–497, Jan. 2022. doi: 10.1109/TSMC.2020.3002762
|
[44] |
L. Hou, D. Chu, and L.-Z. Liao, “A progressive hierarchical alternating least squares method for symmetric nonnegative matrix factorization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 5, pp. 5355–5369, May 2023.
|
[45] |
Z. Liu, X. Luo, and Z. Wang, “Convergence analysis of single latent factor-dependent, nonnegative, and multiplicative update-based nonnegative latent factor models,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1737–1749, Apr. 2021. doi: 10.1109/TNNLS.2020.2990990
|
[46] |
L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral quadratic constraints,” SIAM J. Optim., vol. 26, no. 1, pp. 57–95, 2016. doi: 10.1137/15M1009597
|
[47] |
K. Wang, Y. Dou, T. Sun, P. Qiao, and D. Wen, “An automatic learning rate decay strategy for stochastic gradient descent optimization methods in neural networks,” Int. J. Intell. Syst., vol. 37, no. 10, pp. 7334–7355, Mar. 2022. doi: 10.1002/int.22883
|
[48] |
W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang, “A PID controller approach for stochastic optimization of deep networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 8522–8531.
|
[49] |
P. Bikfalvi and I. Szabo, “Classic controller design,” Control Engineering Solutions: A Practical Approach, P. Albertos, R. Strietzel, and N. Mort, Eds. London, UK: The Institution of Engineering and Technology, 1997.
|
[50] |
S. K. Pradhan and B. Subudhi, “Position control of a flexible manipulator using a new nonlinear self-tuning PID controller,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 136–149, Jan. 2020. doi: 10.1109/JAS.2017.7510871
|
[51] |
K. He, C. Dong, and Q. Wang, “Active disturbance rejection control for uncertain nonlinear systems with sporadic measurements,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 893–906, May 2022. doi: 10.1109/JAS.2022.105566
|
[52] |
D. Zhao, Z. Wang, Y. Chen, G. Wei, and W. Sheng, “Partial-neurons-based proportional-integral observer design for artificial neural networks: A multiple description encoding scheme,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 5, pp. 6393–6407, May 2024. doi: 10.1109/TNNLS.2022.3209632
|
[53] |
H. Mo, Y. Meng, F. Wang, and D. Wu, “Interval type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1658–1672, Sep. 2022. doi: 10.1109/JAS.2022.105806
|
[54] |
J. Lu, M. Savaghebi, A. M. Y. M. Ghias, X. Hou, and J. M. Guerrero, “A reduced-order generalized proportional integral observer-based resonant super-twisting sliding mode control for grid-connected power converters,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 5897–5908, Jul. 2021. doi: 10.1109/TIE.2020.2998745
|
[55] |
Y. Jiang and Y. Yang, “A distributed proportional-integral observer-based hierarchical control for AC microgrids under FDI attacks,” IEEE Trans. Ind. Electron., vol. 71, no. 12, pp. 15780–15792, Dec. 2024. doi: 10.1109/TIE.2024.3387100
|
[56] |
M. Shang, Y. Yuan, X. Luo, and M. Zhou, “An α-β-divergence-generalized recommender for highly accurate predictions of missing user preferences,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8006–8018, Aug. 2022. doi: 10.1109/TCYB.2020.3026425
|
[57] |
M. Guay and D. Dochain, “A proportional-integral extremum-seeking controller design technique,” Automatica, vol. 77, pp. 61–67, Mar. 2017. doi: 10.1016/j.automatica.2016.11.018
|
[58] |
B. Peng, J. Duan, J. Chen, S. E. Li, G. Xie, C. Zhang, Y. Guan, Y. Mu, and E. Sun, “Model-based chance-constrained reinforcement learning via separated proportional-integral lagrangian,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 466–478, Jan. 2024. doi: 10.1109/TNNLS.2022.3175595
|
[59] |
M. Wu, F. Gao, P. Yu, J. She, and W. Cao, “Improve disturbance-rejection performance for an equivalent-input-disturbance-based control system by incorporating a proportional-integral observer,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1254–1260, Feb. 2020. doi: 10.1109/TIE.2019.2898627
|
[60] |
D. D. Lee and S. H. Seung, “Algorithms for non-negative matrix factorization,” Proc. 13th Int. Conf. Neural Information Processing Systems, Cambridge, USA, 2000, pp. 535–541.
|
[61] |
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the Em algorithm,” J. Roy. Stat. Soc. Ser. B (Methodol.), vol. 39, no. 1, pp. 1–22, Sep. 1977. doi: 10.1111/j.2517-6161.1977.tb01600.x
|
[62] |
D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, and M. Hong, “Nonnegative matrix factorization using ADMM: Algorithm and convergence analysis,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 4742–4746.
|
[63] |
F. Wang, X. Lei, B. Liao, and F.-X. Wu, “Predicting drug-drug interactions by graph convolutional network with multi-kernel,” Brief. Bioinform., vol. 23, p. bbab511, Jan. 2021.
|
[64] |
J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, “GroupLens: Applying collaborative filtering to usenet news,” Commun. ACM, vol. 40, no. 3, pp. 77–87, Mar. 1997. doi: 10.1145/245108.245126
|
[65] |
S. Zhang, L. Yao, B. Wu, X. Xu, X. Zhang, and L. Zhu, “Unraveling metric vector spaces with factorization for recommendation,” IEEE Trans. Ind. Inf., vol. 16, no. 2, pp. 732–742, Feb. 2020. doi: 10.1109/TII.2019.2947112
|
[66] |
S. Zhang, L. Yao, and X. Xu, “AutoSVD++: An efficient hybrid collaborative filtering model via contractive auto-encoders,” in Proc. 40th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Shinjuku, Japan, 2017, pp. 957–960.
|
[67] |
I. Cantador, P. Brusilovsky, and T. Kuflik, “Second workshop on information heterogeneity and fusion in recommender systems (HetRec2011),” in Proc. 5th ACM Conf. Recommender Systems, Chicago, USA, 2011, pp. 387–388.
|
[68] |
D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and C. von Mering, “STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets,” Nucleic Acids Res., vol. 47, no. D1, pp. D607–D613, Jan. 2019. doi: 10.1093/nar/gky1131
|
[69] |
Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–45, May 2014.
|
[70] |
J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.
|
[71] |
D. W. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders for collaborative filtering,” in Proc. World Wide Web Conf., Lyon, France, 2018, pp. 689–698.
|
[72] |
Q. Yao, X. Chen, J. T. Kwok, Y. Li, and C. J. Hsieh, “Efficient neural interaction function search for collaborative filtering,” in Proc. Web Conf., Taipei, China, pp. 1660–1670, 2020.
|
[73] |
Y. Lin, P. Ren, Z. Chen, Z. Ren, D. Yu, J. Ma, M. de Rijke, and X. Cheng, “Meta matrix factorization for federated rating predictions,” in Proc. 43rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, 2020, pp. 981–990.
|
[74] |
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “LightGCN: Simplifying and powering graph convolution network for recommendation,” in Proc. 43rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, New York, USA, 2020, pp. 639–648.
|
[75] |
W. Guo, Y. Yang, Y. Hu, C. Wang, H. Guo, Y. Zhang, R. Tang, W. Zhang, and X. He, “Deep graph convolutional networks with hybrid normalization for accurate and diverse recommendation,” in Proc. 3rd Workshop on Deep Learning Practice for High-Dimensional Sparse Data with KDD, Singapore, Singapore, 2021.
|
[76] |
T. Kong, T. Kim, J. Jeon, J. Choi, Y.-C. Lee, N. Park, and S.-W. Kim, “Linear, or non-linear, that is the question,” in Proc. 15th ACM Int. Conf. Web Search and Data Mining, Arizona, USA, 2022, pp. 517–525.
|
[77] |
J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, “Self-supervised graph learning for recommendation,” in Proc. 44th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, 2021, pp. 726–735.
|
[78] |
J. Hu, B. Hooi, S. Qian, Q. Fang, and C. Xu, “MGDCF: Distance learning via Markov graph diffusion for neural collaborative filtering,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 7, pp. 3281–3296, Jul. 2024. doi: 10.1109/TKDE.2023.3348537
|
[79] |
A. Zhang, W. Ma, J. Zheng, X. Wang, and T.-S. Chua, “Robust collaborative filtering to popularity distribution shift,” ACM Trans. Inf. Syst., vol. 42, no. 3, p. 80, Jan. 2024.
|
[80] |
K. Li, R. Chen, and X. Yao, “A data-driven evolutionary transfer optimization for expensive problems in dynamic environments,” IEEE Trans. Evol. Comput., vol. 28, no. 5, pp. 1396–1411, Oct. 2024. doi: 10.1109/TEVC.2023.3307244
|
[81] |
J. Zou, Q. Deng, Y. Liu, X. Yang, S. Yang, and J. Zheng, “A dynamic-niching-based Pareto domination for multimodal multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 28, no. 5, pp. 1529–1543, Oct. 2024. doi: 10.1109/TEVC.2023.3316723
|
[82] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 8778–8790, Nov. 2023. doi: 10.1109/TNNLS.2022.3153039
|
[83] |
A. Apte, U. Thakar, and V. Joshi, “Disturbance observer based speed control of PMSM using fractional order PI controller,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 316–326, Jan. 2019. doi: 10.1109/JAS.2019.1911354
|
[84] |
W. Wu, S. Zhang, M. Tian, D. Tan, X. Wu, and Y. Wan, “Learning to detect soft shadow from limited data,” Vis. Comput., vol. 38, no. 5, pp. 1665–1675, May 2022. doi: 10.1007/s00371-021-02095-5
|
[85] |
Z. Zhong, G. Xiao, S. Wang, L. Wei, and X. Zhang, “PESA-Net: Permutation-equivariant split attention network for correspondence learning,” Inf. Fusion, vol. 77, pp. 81–89, Jan. 2022. doi: 10.1016/j.inffus.2021.07.018
|
[86] |
Z. Teng, L. Qian, and J. Huang, “Multi-target localization algorithm for wireless sensor network,” Peer Peer Netw. Appl., vol. 14, no. 6, pp. 3452–3459, Nov. 2021. doi: 10.1007/s12083-021-01193-4
|
[87] |
Y. Liu and M. Chen, “Applying text similarity algorithm to analyze the triangular citation behavior of scientists,” Appl. Soft Comput., vol. 107, p. 107362, Aug. 2021. doi: 10.1016/j.asoc.2021.107362
|
[88] |
X. Hu, Z. Fan, L. Jiang, J. Xu, G. Li, W. Chen, X. Zeng, G. Yang, and D. Zhang, “TOP-ALCM: A novel video analysis method for violence detection in crowded scenes,” Inf. Sci., vol. 606, pp. 313–327, Aug. 2022. doi: 10.1016/j.ins.2022.05.045
|
[89] |
T. Baker, T. Li, J. Jia, B. Zhang, C. Tan, and A. Y. Zomaya, “Poison-tolerant collaborative filtering against poisoning attacks on recommender systems,” IEEE Trans. Dependable Secure Comput., vol. 21, no. 5, pp. 4589–4599, Sep.-Oct. 2024. doi: 10.1109/TDSC.2024.3354462
|
[90] |
D. Wu and X. Luo, “Robust latent factor analysis for precise representation of high-dimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021. doi: 10.1109/JAS.2020.1003533
|
[91] |
G.-P. Liu, “Coordinated control of networked multiagent systems with communication constraints using a proportional integral predictive control strategy,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4735–4743, Nov. 2020. doi: 10.1109/TCYB.2019.2894264
|
[92] |
Y. Zhang, Z. Zheng, and M. R. Lyu, “WSPred: A time-aware personalized QoS prediction framework for web services,” in Proc IEEE 22nd Int. Symp. Software Reliability Engineering, Hiroshima, Japan, 2011, pp. 210–219.
|