| Citation: | L. Chen, Y. Liu, Y. Zhao, and Z. Wang, “Exponential synchronization of infinite-dimensional stochastic systems with poisson jumps under aperiodically intermittent impulse control,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 1–11, Feb. 2026. |
| [1] |
H. Zhang, et al., “Security defense decision method based on potential differential game for complex networks,” Comput. & Secur., vol. 129, p. 103187.
|
| [2] |
H. Zhou, L. Zhou, B. Guo, Z. Bai, and Z. Wang, “Analyzing the railway operation network by evaluating the importance of time-space nodes,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 6, pp. 4209–4219, Nov. 2022. doi: 10.1109/TNSE.2022.3196397
|
| [3] |
J. B. Liu, X. Zhang, J. Cao, and L. Chen, “Mean first-passage time and robustness of complex cellular mobile communication network,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 3, pp. 3066–3076, May 2024. doi: 10.1109/TNSE.2024.3358369
|
| [4] |
Q. L. Han, D. Ding, and X. Ge, “New trends of artificial-intelligence-based control, filtering, and optimization for industrial cyber-physical systems,” Inf. Sci., vol. 648, p. 119333, 2023. doi: 10.1016/j.ins.2023.119333
|
| [5] |
Y. Yu, G. P. Liu, Y. Huang, and P. Shi, “Optimal cooperative secondary control for islanded dc microgrids via a fully actuated approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 405–417, 2024. doi: 10.1109/JAS.2023.123942
|
| [6] |
B. Zhou, X.-B. Shu, F. Xu, F. Yang, and Y. Wang, “Exponential synchronization of dynamical complex networks via random impulsive scheme,” Nonlinear Anal.-Model. Control, vol. 29, no. 4, pp. 816–832, 2024.
|
| [7] |
L. Hua, H. Zhu, S. Zhong, K. Shi, and J. Cao, “Novel criteria on finite-time stability of impulsive stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1634–1636, 2023. doi: 10.1109/JAS.2023.123276
|
| [8] |
Y. Cui, P. Cheng, and X. Ge, “Exponential synchronization of delayed stochastic complex dynamical networks via hybrid impulsive control,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 785–787, 2024. doi: 10.1109/JAS.2023.123867
|
| [9] |
L. Wu, Z. Feng, and J. Lam, “Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 1957–1972, 2013. doi: 10.1109/TNNLS.2013.2271046
|
| [10] |
L. Zhang, K. Shi, J. Lu, and J. Lou, “Bipartite synchronization of antagonistic coupled neural networks: Average-delay pinning impulsive control,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 9, pp. 3814–3818, Sep. 2022.
|
| [11] |
Q. Chen, X. Huang, Z. Wang, and Y. Li, “H∞ exponential synchronization of chaotic Lur’e systems: An asynchronous memory-based event-triggered scheme,” IEEE Trans. Ind. Informat., vol. 20, no. 4, pp. 6603–6611, Apr. 2024. doi: 10.1109/TII.2023.3348825
|
| [12] |
W. Ma, Y. Wu, and C. Li, “Pinning synchronization between two general fractional complex dynamical networks with external disturbances,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 332–339, 2017. doi: 10.1109/JAS.2016.7510202
|
| [13] |
Y. Liu, J. Liu, and W. Li, “Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4799–4806, Oct. 2021. doi: 10.1109/TAC.2020.3036035
|
| [14] |
H. Chen, P. Shi, and C. C. Lim, “Cluster synchronization for neutral stochastic delay networks via intermittent adaptive control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3246–3259, Nov. 2019. doi: 10.1109/TNNLS.2018.2890269
|
| [15] |
X. He, C. K. Ahn, and P. Shi, “Periodically intermittent stabilization of neural networks based on discrete-time observations,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp. 3497–3501, Dec. 2020.
|
| [16] |
W. Xia and J. Cao, “Pinning synchronization of delayed dynamical networks via periodically intermittent control,” Chaos Nonlinear Sci., vol. 19, no. 1, p. 13120, Feb. 2009. doi: 10.1063/1.3071933
|
| [17] |
T. Huang, C. Li, W. Yu, and G. Chen, “Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback,” Nonlinearity, vol. 22, no. 3, p. 569, Feb. 2009. doi: 10.1088/0951-7715/22/3/004
|
| [18] |
Y. Wu, Z. Sun, G. Ran, and L. Xue, “Intermittent control for fixed-time synchronization of coupled networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1488–1490, 2023. doi: 10.1109/JAS.2023.123363
|
| [19] |
W. Zhang, H. Zhu, S. Wen, and T. Huang, “Finite-time bipartite tracking consensus of fractional-order multi-layer signed networks by aperiodically intermittent control,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 71, no. 6, pp. 3061–3065, 2024.
|
| [20] |
F. Lamoline and J. J. Winkin, “Well-posedness of boundary controlled and observed stochastic port-hamiltonian systems,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4258–4264, 2020. doi: 10.1109/TAC.2019.2954481
|
| [21] |
Z. Brzeźniak, W. Liu, and J. Zhu, “Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise,” Nonlinear Anal. Real World Appl., vol. 17, pp. 283–310, 2014. doi: 10.1016/j.nonrwa.2013.12.005
|
| [22] |
J. Bao, A. Truman, and C. Yuan, “Almost sure asymptotic stability of stochastic partial differental equations with jumps,” SIAM J. Control and Optimization, vol. 49, no. 2, pp. 771–787, 2011. doi: 10.1137/100786812
|
| [23] |
J. Bao, Z. Hou, and C. Yuan, “Stability in distribution of mild solutions to stochastic partial differential equations,” Proc. Am. Math. Soc., vol. 138, no. 6, pp. 2169–2180, Jun. 2010. doi: 10.1090/S0002-9939-10-10230-5
|
| [24] |
T. Caraballo and K. Liu, “Exponential stability of mild solutions of stochastic partial differential equations with delays,” Stoch. Anal. Appl., vol. 17, no. 5, pp. 743–763, 1999. doi: 10.1080/07362999908809633
|
| [25] |
G. Chen, O. van Gaans, and S. V. Lunel, “Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps,” Stat. Probab. Lett., vol. 141, pp. 7–18, Oct. 2018. doi: 10.1016/j.spl.2018.05.017
|
| [26] |
P. Wang, X. Wang, and H. Su, “Input-to-state stability of impulsive stochastic infinite dimensional systems with Poisson jumps,” Automtica, vol. 128, p. 109553, Jun. 2021. doi: 10.1016/j.automatica.2021.109553
|
| [27] |
N. Yang, X. Gu, and H. Su, “Synchronization for multilink stochastic complex networks via impulsive control in infinite dimensions,” IEEE Trans. Control Netw. Syst., vol. 11, no. 2, pp. 1093–1102, Jun. 2024. doi: 10.1109/TCNS.2023.3332737
|
| [28] |
G. Da Prato, A. Jentzen, and M. Roeckner, “A mild ito formula for SPDES,” Trans. Am. Math. Soc., vol. 372, no. 6, pp. 3755–3807, Sep. 2019. doi: 10.1090/tran/7165
|
| [29] |
Y. Zhao, L. Sun, L. Chen, and Z. Wang, “Aperiodic intermittent dynamic event-triggered synchronization control for stochastic delayed multi-links complex networks,” Neural Netw., vol. 180, p. 106658, Dec. 2024. doi: 10.1016/j.neunet.2024.106658
|
| [30] |
X. Ji, J. Lu, B. Jiang, and K. Shi, “Distributed synchronization of delayed neural networks: delay-dependent hybrid impulsive control,” IEEE Trans. Netw. Sci. Eng, vol. 9, no. 2, pp. 634–647, Apr. 2022. doi: 10.1109/TNSE.2021.3128244
|
| [31] |
C. Gao, B. Guo, Y. Xiao, and J. Bao, “Aperiodically synchronization of multi-links delayed complex networks with semi-Markov jump and their numerical simulations to single-link robot arms,” Neurocomputing, vol. 575, Mar. 2024.
|
| [32] |
M. Y. Li and Z. Shuai, “Global-stability problem for coupled systems of differential equations on networks,” J. Differ. Equ., vol. 248, no. 1, pp. 1–20, 2010. doi: 10.1016/j.jde.2009.09.003
|
| [33] |
H. Ye, J. Gao, and Y. Ding, “A generalized gronwall inequality and its application to a fractional differential equation,” J. Math. Anal. Appl., vol. 328, no. 2, pp. 1075–1081, Apr. 2007. doi: 10.1016/j.jmaa.2006.05.061
|