A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 3 Issue 3
Jul.  2016

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Cuihong Wang, Huanhuan Li and YangQuan Chen, "H∞ Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 3, pp. 304-310, 2016.
Citation: Cuihong Wang, Huanhuan Li and YangQuan Chen, "H∞ Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range," IEEE/CAA J. of Autom. Sinica, vol. 3, no. 3, pp. 304-310, 2016.

H Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range

  • This paper focuses on the H output feedback control problem of linear time-invariant fractional-order systems over finite frequency range. Based on the generalized Kalman-Yakubovic-Popov (KYP) Lemma and a key projection lemma, a necessary and sufficient condition is established to ensure the existence of the H output feedback controller over finite frequency range, a desirable property in control engineering practice. By using the matrix congruence transformation, the feedback control gain matrix is decoupled and further parameterized by a scalar matrix. Two iterative linear matrix inequality algorithms are developed to solve this problem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.

     

  • loading
  • [1]
    Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999.
    [2]
    Matignon D. Stability results for fractional differential equations with applications to control processing. In: Proceedings of the 1996 IMACSSMC, Vol. 2. 1996. 963-968
    [3]
    Sabatier J, Farges C, Trigeassou J C. A stability test for noncommensurate fractional order systems. Systems and Control Letters, 2013, 62(9): 739-746
    [4]
    Sabatier J, Moze M, Farges C. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, 2010, 59(5): 1594-1609
    [5]
    Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8): 1965-1969
    [6]
    Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11): 2985-2988
    [7]
    Ma Y D, Lu J G, Chen W D. Robust stability and stabilization of fractional order linear systems with positive real uncertainty. ISA Transactions, 2014, 53(2): 199-209
    [8]
    Liang S, Wei Y H, Pan J W, Gao Q, Wang Y. Bounded real lemmas for fractional order systems. International Journal of Automation and Computing, 2015, 12(2): 192-198
    [9]
    Farges C, Fadiga L, Sabatier J. H analysis and control of commensurate fractional order systems. Mechatronics, 2013, 23(7): 772-780
    [10]
    Fadiga L, Farges C, Sabatier J, Santugini K. H output feedback control of commensurate fractional order systems. In: Proceedings of the 2013 European Control Conference (ECC). Zurich: IEEE, 2013. 4538-4543
    [11]
    Shen J, Lam J. State feedback H control of commensurate fractionalorder systems. International Journal of Systems Science, 2014, 45(3): 363-372
    [12]
    Rantzer A. On the Kalman-Yakubovich-Popov lemma. Systems and Control Letters, 1996, 28(1): 7-10
    [13]
    Najson F. On the Kalman-Yakubovich-Popov lemma for discrete-time positive linear systems: a novel simple proof and some related results. International Journal of Control, 2013, 86(10): 1813-1823
    [14]
    Sreeram V, Sahlan S. Improved results on frequency-weighted balanced truncation and error bounds. International Journal of Robust and Nonlinear Control, 2012, 22(11): 1195-1211
    [15]
    Stefanovski J. Kalman-Yakubovich-Popov lemma for descriptor systems. Systems and Control Letters, 2014, 74: 8-13
    [16]
    Iwasaki T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59
    [17]
    Shen J, Lam J. Improved results on H model reduction for continuoustime linear systems over finite frequency ranges. Automatica, 2015, 53: 79-84
    [18]
    Li X W, Gao H J. A heuristic approach to static output-feedback controller synthesis with restricted frequency-range specifications. IEEE Transactions on Automatic Control, 2014, 59(4): 1008-1014
    [19]
    Pipeleer G, Vandenberghe L. Generalized KYP lemma with real data. IEEE Transactions on Automatic Control, 2011, 56(12): 2942-2946
    [20]
    Gahinet P, Apkarian P. A linear matrix inequality approach to H control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448
    [21]
    Cao Y Y, Lam J, Sun Y X. Static output feedback stabilization: an ILMI approach. Automatica, 1998, 34(12): 1641-1645
    [22]
    Shu Z, Lam J. An augmented system approach to static output-feedback stabilization with H performance for continuous-time plants. International Journal of Robust and Nonlinear Control, 2009, 19(7): 768-785

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1077) PDF downloads(4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return