A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
Y. Liufu and Y. Guan, “Majorization-minimization-based neural dynamics for time-variant optimization under multi-set constraints,” IEEE/CAA J. Autom. Sinica, 2026. doi: 10.1109/JAS.2026.125768
Citation: Y. Liufu and Y. Guan, “Majorization-minimization-based neural dynamics for time-variant optimization under multi-set constraints,” IEEE/CAA J. Autom. Sinica, 2026. doi: 10.1109/JAS.2026.125768

Majorization-Minimization-Based Neural Dynamics for Time-Variant Optimization Under Multi-Set Constraints

doi: 10.1109/JAS.2026.125768
More Information
  • loading
  • [1]
    J. P. Carvalho and A. P. Aguiar, “Deep reinforcement learning for zero-shot coverage path planning with mobile robots,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1594–1609, Aug. 2025. doi: 10.1109/JAS.2024.125064
    [2]
    J. Fan, L. Jin, P. Li, J. Liu, Z.-G. Wu, and W. Chen, “Coevolutionary neural dynamics considering multiple strategies for nonconvex optimization,” Tsinghua Sci. Technol., 2025, doi: 10.26599/TST.2025.9010120
    [3]
    F. E. Curtis, O. Schenk, and A. Wächter, “An interior-point algorithm for large-scale nonlinear optimization with inexact step computations,” SIAM J. SCI. Comput., vol. 32, no. 6, pp. 3447–3475, 2010. doi: 10.1137/090747634
    [4]
    X. Jiang, W.-J. Zeng, A. Yasotharan, H. C. So, and T. Kirubarajan, “Quadratically constrained minimum dispersion beamforming via gradient projection,” IEEE Trans. Signal Process, vol. 63, no. 1, pp. 192–205, Jan. 2015. doi: 10.1109/TSP.2014.2367464
    [5]
    H. Chung, E. Polak, and S. Sastry, “An external active-set strategy for solving optimal control problems,” IEEE Trans. Autom. Control, vol. 54, no. 5, pp. 1129–1133, May 2009. doi: 10.1109/TAC.2009.2013035
    [6]
    M. Liu, Y. Li, Y. Chen, Y. Qi, and L. Jin, “A distributed competitive and collaborative coordination for multirobot systems,” IEEE Trans. on Mob. Comput., vol. 23, no. 12, pp. 11436–11448, Dec. 2024. doi: 10.1109/TMC.2024.3397242
    [7]
    H. Huang, L. Jin, and Z. Zeng, “A momentum recurrent neural network for sparse motion planning of redundant manipulators with majorization-minimization,” IEEE Trans. Ind. Electron., vol. 72, no. 12, pp. 13532-13541, Dec. 2025.
    [8]
    M. Liu, L. Chen, X. Du, L. Jin, and M. Shang, “Activated gradients for deep neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 2156–2168, Apr. 2023. doi: 10.1109/TNNLS.2021.3106044
    [9]
    Y. Yang, P. Zhu, W. Li, R. M. Voyles, and X. Ma, “A fractional-order gradient neural solution to time-variant quadratic programming with application to robot motion planning,” IEEE Trans. Ind. Electron., vol. 71, no. 12, pp. 16579–16589, Dec. 2024. doi: 10.1109/TIE.2024.3395780
    [10]
    L. Jin, L. Wei, and S. Li, “Gradient-based differential neural-solution to time-dependent nonlinear optimization,” IEEE Trans. Autom. Control, vol. 68, no. 1, pp. 620–627, Jan. 2023. doi: 10.1109/TAC.2022.3144135
    [11]
    Y. Liufu, L. Jin, and S. Li, “Modified gradient projection neural network for multiset constrained optimization,” IEEE Trans. Ind. Informat., vol. 19, no. 9, pp. 9413–9423, Sept. 2023. doi: 10.1109/TII.2022.3228396
    [12]
    E. C. Chi, H. Zhou, and K. Lange, “Distance majorization and its applications,” Mathematical Programming, vol. 146, no. 1, pp. 409–436, 2014.
    [13]
    S. Sastry, Nonlinear systems: Analysis, stability, and control, New York, Springer, 1999, pp. 182–234.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (56) PDF downloads(2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return