A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
K. Fujita, D. Tsubakino, and S. Hara, “A stochastic optimal control for a class of LTI systems with a state-dependent wiener process: An algebraic approach,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 489–491, Feb. 2026. doi: 10.1109/JAS.2026.125750
Citation: K. Fujita, D. Tsubakino, and S. Hara, “A stochastic optimal control for a class of LTI systems with a state-dependent wiener process: An algebraic approach,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 489–491, Feb. 2026. doi: 10.1109/JAS.2026.125750

A Stochastic Optimal Control for a Class of LTI Systems With a State-Dependent Wiener Process: An Algebraic Approach

doi: 10.1109/JAS.2026.125750
More Information
  • loading
  • [1]
    A. Böttcher, “The algebraic Riccati equation with Toeplitz matrices as coefficients,” Electronic J. Linear Algebra, vol. 22, pp. 348–362, 2011.
    [2]
    N. Motee and Q. Sun, “Sparsity and spatial localization measures for spatially distributed systems,” SIAM J. Control and Optimization, vol. 55, no. 1, pp. 200–235, 2017. doi: 10.1137/15M1049294
    [3]
    I. Lasiecka and A. Tuffaha, “Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid structure interaction,” Systems & Control Letters, vol. 58, no. 7, pp. 499–509, 2009.
    [4]
    K. Fujita and D. Tsubakino, “Hierarchical optimal control with information aggregation for groups including different numbers of agents,” in Proc. American Control Conf., 2022, pp. 1595–1600.
    [5]
    W. M. Wonham, “Optimal stationary control of a linear system with state-dependent noise,” SIAM Journal on Control, vol. 5, pp. 3–500, 1967.
    [6]
    Y. Zheng, L. Furieri, M. Kamgarpour, and N. Li, “Sample complexity of linear quadratic gaussian (LQG) control for output feedback systems,” in Proc. 3rd Conf. Learning for Dynamics and Control, 2021, vol. 144. pp. 559–570.
    [7]
    M. D. Fragoso, O. L. V. Costa, and C. E. de Souza, “A new approach to linearly perturbed Riccati equations arising in stochastic control,” Applied Math. and Optimization, vol. 37, no. 1, pp. 99–126, 1998. doi: 10.1007/s002459900070
    [8]
    R. Khasminskii, Stochastic Stability of Differential Equations. Berlin, Heidelberg, Germany: Springer, 2012.
    [9]
    M. A. Rami and X. Y. Zhou, “Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls,” IEEE Trans. Autom. Control, vol. 45, no. 6, pp. 1131–1143, 2000. doi: 10.1109/9.863597
    [10]
    W. M. Wonham, “On a matrix Riccati equation of stochastic control,” SIAM J. Control, vol. 6, no. 4, pp. 681–697, 1968. doi: 10.1137/0306044
    [11]
    N. Motee, A. Jadbabaie, and B. Bamieh, “On decentralized optimal control and information structures,” in Proc. American Control Conf., 2008, pp. 4985–4990.
    [12]
    J. Sang, D. Ma, and Y. Zhou, “Group-consensus of hierarchical containment control for linear multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1462–1474, 2023. doi: 10.1109/JAS.2023.123528

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return