| Citation: | E. Shi, B. Zhang, X. Tan, Y. Zhou, B. Huo, L. Huang, L. Cheng, H. Liu, L. Liu, and X. Zhao, “A systematic review of respiratory monitoring and assistance techniques from a pulmonary rehabilitation robot perspective,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 1–22, Feb. 2026. doi: 10.1109/JAS.2026.125723 |
| [1] |
GBD Chronic Respiratory Disease Collaborators, “Prevalence and attributable health burden of chronic respiratory diseases, 1990−2017: A systematic analysis for the Global Burden of Disease Study 2017,” Lancet Respir. Med., vol. 8, no. 6, pp. 585–596, Jun. 2020. doi: 10.1016/S2213-2600(20)30105-3
|
| [2] |
W. W. Labaki and M. K. Han, “Chronic respiratory diseases: A global view,” Lancet Respir. Med., vol. 8, no. 6, pp. 531–533, Jun. 2020. doi: 10.1016/S2213-2600(20)30157-0
|
| [3] |
M. A. Spruit, S. J. Singh, C. Garvey, R. ZuWallack, L. Nici, C. Rochester, et al, “An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation,” Am. J. Respir. Crit. Care Med., vol. 188, no. 8, pp. e13–e64, Oct. 2013. doi: 10.1164/rccm.201309-1634ST
|
| [4] |
Z.-H. Zhu, T. Liu, B. Cong, and F. Liu, “A pulmonary rehabilitation training robot for chronic obstructive pulmonary disease patient,” in Wearable Sensors and Robots, C. Yang, G. S. Virk, and H. Yang, Eds. Singapore, Singapore: Springer, 2017, pp. 251−262.
|
| [5] |
K. A. Spitzer, M. S. Stefan, A. Priya, Q. R. Pack, P. S. Pekow, T. Lagu, V. M. Pinto-Plata, R. L. ZuWallack, and P. K. Lindenauer, “Participation in pulmonary rehabilitation after hospitalization for chronic obstructive pulmonary disease among Medicare beneficiaries,” Ann. Am. Thorac. Soc., vol. 16, no. 1, pp. 99–106, Jan. 2019. doi: 10.1513/AnnalsATS.201805-332OC
|
| [6] |
C. L. Rochester, I. Vogiatzis, P. Powell, S. Masefield, and M. A. Spruit, “Patients’ perspective on pulmonary rehabilitation: Experiences of European and American individuals with chronic respiratory diseases,” ERJ Open Res., vol. 4, no. 4, pp. 00085–2018, Oct. 2018. doi: 10.1183/23120541.00085-2018
|
| [7] |
C. L. Rochester, I. Vogiatzis, A. E. Holland, S. C. Lareau, D. D. Marciniuk, M. A. Puhan, et al, “An official American thoracic society/European respiratory society policy statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation,” Am. J. Respir. Crit. Care Med., vol. 192, no. 11, pp. 1373–1386, Dec. 2015. doi: 10.1164/rccm.201510-1966ST
|
| [8] |
A. E. Holland, N. S. Cox, L. Houchen-Wolloff, C. L. Rochester, C. Garvey, R. Zuwallack, L. Nici, T. Limberg, S. C. Lareau, B. P. Yawn, et al, “Defining modern pulmonary rehabilitation. An official American thoracic society workshop report,” Ann. Am. Thorac. Soc., vol. 18, no. 5, pp. e12–e29, May 2021. doi: 10.1513/AnnalsATS.202102-146ST
|
| [9] |
A. J. Young and D. P. Ferris, “State of the art and future directions for lower limb robotic exoskeletons,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 2, pp. 171–182, Feb. 2017. doi: 10.1109/TNSRE.2016.2521160
|
| [10] |
E. Garcia, M. A. Jimenez, P. G. De Santos, and M. Armada, “The evolution of robotics research,” IEEE Rob. Autom. Mag., vol. 14, no. 1, pp. 90–103, Mar. 2007. doi: 10.1109/MRA.2007.339608
|
| [11] |
S. H. Cross, E. W. Ely, D. Kavalieratos, J. A. Tulsky, and H. J. Warraich, “Place of death for individuals with chronic lung disease: Trends and associated factors from 2003 to 2017 in the United States,” CHEST, vol. 158, no. 2, pp. 670–680, Aug. 2020.
|
| [12] |
S.-Y. Lee, J.-O. Hahn, J. Beom, J.-H. Park, H. E. Cho, S.-W. Kang, and K.-J. Cho, “Exo-Abs: A wearable robotic system inspired by human abdominal muscles for noninvasive and effort-synchronized respiratory assistance,” IEEE Trans. Robot., vol. 38, no. 5, pp. 2994–3014, Oct. 2022. doi: 10.1109/TRO.2022.3167399
|
| [13] |
Y. Zhang, Z. Wang, Q. Ge, Z. Wang, X. Zhou, S. Han, W. Guo, Y. Zhang, and D. Wang, “Soft exoskeleton mimics human cough for assisting the expectoration capability of SCI patients,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 936–946, Mar. 2022. doi: 10.1109/TNSRE.2022.3162578
|
| [14] |
Y. Tong, H. Liu, and Z. Zhang, “Advancements in humanoid robots: A comprehensive review and future prospects,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 301–328, Feb. 2024. doi: 10.1109/JAS.2023.124140
|
| [15] |
H. Xia, M. A. Khan, Z. Li, and M. C. Zhou, “Wearable robots for human underwater movement ability enhancement: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 967–977, Jun. 2022. doi: 10.1109/JAS.2022.105620
|
| [16] |
F. Xu and H. Wang, “Soft robotics: Morphology and morphology-inspired motion strategy,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1500–1522, Sep. 2021. doi: 10.1109/JAS.2021.1004105
|
| [17] |
U. E. Ogenyi, J. Liu, C. Yang, Z. Ju, and H. Liu, “Physical human–robot collaboration: Robotic systems, learning methods, collaborative strategies, sensors, and actuators,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1888–1901, Apr. 2021. doi: 10.1109/TCYB.2019.2947532
|
| [18] |
D. Herath and D. St-Onge, Foundations of Robotics: A Multidisciplinary Approach with Python and ROS. Singapore, Singapore: Springer, 2022.
|
| [19] |
A. Hansmann, B. M. Morrow, and H.-J. Lang, “Review of supplemental oxygen and respiratory support for paediatric emergency care in sub-Saharan Africa,” Afr. J. Emerg. Med., vol. 7, no. S1, pp. S10–S19, Nov. 2017. doi: 10.1016/j.afjem.2017.10.001
|
| [20] |
J. Crumpton and J. Wray, “Children’s and adolescents’ experiences of living with respiratory assistance: A systematic review of qualitative studies,” Int. J. Pediatr. Otorhinolaryngol., vol. 127, p. 109658, Dec. 2019. doi: 10.1016/j.ijporl.2019.109658
|
| [21] |
O. Kaltsogianni, T. Dassios, and A. Greenough, “Neonatal respiratory support strategies—short and long-term respiratory outcomes,” Front. Pediatr., vol. 11, p. 1212074, Jul. 2023.
|
| [22] |
A. Lavizzari, E. Zannin, D. Klotz, T. Dassios, and C. C. Roehr, “State of the art on neonatal noninvasive respiratory support: How physiological and technological principles explain the clinical outcomes,” Pediatr. Pulmonol., vol. 58, no. 9, pp. 2442–2455, Sep. 2023. doi: 10.1002/ppul.26561
|
| [23] |
F. Q. Al‐Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, “Respiration rate monitoring methods: A review,” Pediatr. Pulmonol., vol. 46, no. 6, pp. 523–529, Jun. 2011. doi: 10.1002/ppul.21416
|
| [24] |
H. Rehouma, R. Noumeir, S. Essouri, and P. Jouvet, “Advancements in methods and camera-based sensors for the quantification of respiration,” Sensors, vol. 20, no. 24, p. 7252, Dec. 2020. doi: 10.3390/s20247252
|
| [25] |
J. J. Cummings, R. A. Polin, and Committee on Fetus and Newborn, American Academy of Pediatrics, “Noninvasive respiratory support,” Pediatrics, vol. 137, no. 1, p. e20153758, Jan. 2016. doi: 10.1542/peds.2015-3758
|
| [26] |
F. González-Seguel, A. Camus-Molina, A. Jasmén, J. Molina, R. Pérez-Araos, and J. Graf, “Respiratory support adjustments and monitoring of mechanically ventilated patients performing early mobilization: A scoping review,” Crit. Care Explor., vol. 3, no. 4, p. e0407, Apr. 2021. doi: 10.1097/cce.0000000000000407
|
| [27] |
D. Vitazkova, E. Foltan, H. Kosnacova, M. Micjan, M. Donoval, A. Kuzma, M. Kopani, and E. Vavrinsky, “Advances in respiratory monitoring: A comprehensive review of wearable and remote technologies,” Biosensors, vol. 14, no. 2, p. 90, Feb. 2024. doi: 10.3390/bios14020090
|
| [28] |
T. Hussain, S. Ullah, R. Fernández-García, and I. Gil, “Wearable sensors for respiration monitoring: A review,” Sensors, vol. 23, no. 17, p. 7518, Aug. 2023. doi: 10.3390/s23177518
|
| [29] |
J. Askanazi, P. A. Silverberg, R. J. Foster, A. I. Hyman, J. Milic-Emili, and J. M. Kinney, “Effects of respiratory apparatus on breathing pattern,” J. Appl. Physiol., vol. 48, no. 4, pp. 577–580, Apr. 1980.
|
| [30] |
D. Fan, J. Yang, J. Zhang, Z. Lv, H. Huang, J. Qi, and P. Yang, “Effectively measuring respiratory flow with portable pressure data using back propagation neural network,” IEEE J. Transl. Eng. Health Med., vol. 6, p. 1600112, Jan. 2018. doi: 10.1109/jtehm.2017.2688458
|
| [31] |
A. Inada, S. Inaba, Y. Matsumura, T. Sugiyama, N. Hanaoka, N. Fujiyoshi, N. Nozaki-Taguchi, Y. Sato, and S. Isono, “Contact-free assessments of respiratory rate and volume with load cells under the bed legs in ventilated patients: A prospective exploratory observational study,” J. Appl. Physiol., vol. 134, no. 6, pp. 1341–1348, Jun. 2023. doi: 10.1152/japplphysiol.00742.2022
|
| [32] |
M. Serwatko, “Validation of a new method to assess respiratory effort non-invasively,” M.S. thesis, Reykjavik University, Reykjavík, Iceland, 2016.
|
| [33] |
K. Konno and J. Mead, “Measurement of the separate volume changes of rib cage and abdomen during breathing,” J. Appl. Physiol., vol. 22, no. 3, pp. 407–422, Mar. 1967. doi: 10.1152/jappl.1967.22.3.407
|
| [34] |
Y. Retory, P. Niedzialkowski, C. de Picciotto, M. Bonay, and M. Petitjean, “New respiratory inductive plethysmography (RIP) method for evaluating ventilatory adaptation during mild physical activities,” PLoS One, vol. 11, no. 3, p. e0151983, Mar. 2016. doi: 10.1371/journal.pone.0151983
|
| [35] |
C. Massaroni, A. Nicolò, D. Lo Presti, M. Sacchetti, S. Silvestri, and E. Schena, “Contact-based methods for measuring respiratory rate,” Sensors, vol. 19, no. 4, p. 908, Feb. 2019. doi: 10.3390/s19040908
|
| [36] |
J. D. Tocco, D. L. Presti, M. Zaltieri, G. D’alesio, M. Filosa, L. Massari, et al, “A wearable system based on flexible sensors for unobtrusive respiratory monitoring in occupational settings,” IEEE Sens. J., vol. 21, no. 13, pp. 14369–14378, Jul. 2021. doi: 10.1109/JSEN.2020.3036443
|
| [37] |
T. Kondo, T. Uhlig, P. Pemberton, and P. D. Sly, “Laser monitoring of chest wall displacement,” Eur. Respir. J., vol. 10, no. 8, pp. 1865–1869, Aug. 1997. doi: 10.1183/09031936.97.10081865
|
| [38] |
A. De Groote, M. Wantier, G. Cheron, M. Estenne, and M. Paiva, “Chest wall motion during tidal breathing,” J. Appl. Physiol., vol. 83, no. 5, pp. 1531–1537, Nov. 1997. doi: 10.1152/jappl.1997.83.5.1531
|
| [39] |
C. Romano, D. Formica, E. Schena, and C. Massaroni, “Investigation of body locations for cardiac and respiratory monitoring with skin-interfaced inertial measurement unit sensors,” IEEE Sens. J., vol. 23, no. 7, pp. 7806–7815, Apr. 2023. doi: 10.1109/JSEN.2023.3245415
|
| [40] |
D. Jarchi, S. J. Rodgers, L. Tarassenko, and D. A. Clifton, “Accelerometry-based estimation of respiratory rate for post-intensive care patient monitoring,” IEEE Sens. J., vol. 18, no. 12, pp. 4981–4989, Jun. 2018. doi: 10.1109/JSEN.2018.2828599
|
| [41] |
V.-P. Seppa, J. Viik, and J. Hyttinen, “Assessment of pulmonary flow using impedance pneumography,” IEEE Trans. Biomed. Eng., vol. 57, no. 9, pp. 2277–2285, Sep. 2010. doi: 10.1109/TBME.2010.2051668
|
| [42] |
A. Shahshahani, C. Laverdiere, S. Bhadra, and Z. Zilic, “Ultrasound sensors for diaphragm motion tracking: An application in non-invasive respiratory monitoring,” Sensors, vol. 18, no. 8, p. 2617, Aug. 2018. doi: 10.3390/s18082617
|
| [43] |
M. Ràfols-de-Urquía, L. Estrada, J. Estévez-Piorno, L. Sarlabous, R. Jané, and A. Torres, “Evaluation of a wearable device to determine cardiorespiratory parameters from surface diaphragm electromyography,” IEEE J. Biomed. Health Inf., vol. 23, no. 5, pp. 1964–1971, Sep. 2019. doi: 10.1109/JBHI.2018.2885138
|
| [44] |
D. Fan, X. Yang, N. Zhao, L. Guan, and Q. H. Abbasi, “Exercise monitoring and assessment system for home-based respiratory rehabilitation,” IEEE Sens. J., vol. 22, no. 19, pp. 18890–18902, Oct. 2022. doi: 10.1109/JSEN.2022.3200984
|
| [45] |
F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor breathing and heart rate,” in Proc. 33rd Annu. ACM Conf. Human Factors in Computing Systems, Seoul, Republic of Korea, 2015, pp. 837−846.
|
| [46] |
R. Ravichandran, E. Saba, K.-Y. Chen, M. Goel, S. Gupta, and S. N. Patel, “WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home,” in Proc. IEEE Int. Conf. Pervasive Computing and Communications, St. Louis, USA, 2015, pp. 131−139.
|
| [47] |
S. A. Nehmeh and Y. E. Erdi, “Respiratory motion in positron emission tomography/computed tomography: A review,” Semin. Nucl. Med., vol. 38, no. 3, pp. 167–176, May 2008. doi: 10.1053/j.semnuclmed.2008.01.002
|
| [48] |
C. Massaroni, J. Di Tocco, R. Sabbadini, A. Carnevale, D. Lo Presti, E. Schena, et al., “Influence of torso movements on a multi-sensor garment for respiratory monitoring during walking and running activities,” in Proc. IEEE Int. Instrumentation and Measurement Technology Conf., Dubrovnik, Croatia, 2020, pp. 1−6.
|
| [49] |
D. Jarchi, J. Pope, T. K. M. Lee, L. Tamjidi, A. Mirzaei, and S. Sanei, “A review on accelerometry-based gait analysis and emerging clinical applications,” IEEE Rev. Biomed. Eng., vol. 11, pp. 177–194, Feb. 2018. doi: 10.1109/RBME.2018.2807182
|
| [50] |
J. M. Zanetti and D. M. Salerno, “Seismocardiography: A technique for recording precordial acceleration,” in Proc. Computer-Based Medical Systems - Proc. Fourth Annu. IEEE Symp., Baltimore, USA, 1991, pp. 4−9.
|
| [51] |
J. M. Zanetti and K. Tavakolian, “Seismocardiography: Past, present and future,” in Proc. 35th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013, pp. 7004−7007.
|
| [52] |
K. Pandia, O. T. Inan, G. T. A. Kovacs, and L. Giovangrandi, “Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer,” Physiol. Meas., vol. 33, no. 10, pp. 1643–1660, Sep. 2012. doi: 10.1088/0967-3334/33/10/1643
|
| [53] |
V. Zakeri, A. Akhbardeh, N. Alamdari, R. Fazel-Rezai, M. Paukkunen, and K. Tavakolian, “Analyzing seismocardiogram cycles to identify the respiratory phases,” IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1786–1792, Aug. 2017. doi: 10.1109/TBME.2016.2621037
|
| [54] |
I. Frerichs, J. Scholz, and N. Weiler, “Electrical impedance tomography and its perspectives in intensive care medicine,” in Yearbook of Intensive Care and Emergency Medicine 2006, J.-L. Vincent, Ed. Berlin, Heidelberg, Germany: Springer, 2006, pp. 437−447.
|
| [55] |
V.-P. Seppä, J. Hyttinen, M. Uitto, W. Chrapek, and J. Viik, “Novel electrode configuration for highly linear impedance pneumography,” Biomed. Tech., vol. 58, no. 1, pp. 35–38, Feb. 2013. doi: 10.1515/bmt-2012-0068
|
| [56] |
J. M. Ernst, D. A. Litvack, D. L. Lozano, J. T. Cacioppo, and G. G. Berntson, “Impedance pneumography: Noise as signal in impedance cardiography,” Psychophysiology, vol. 36, no. 3, pp. 333–338, May 1999.
|
| [57] |
M. Yang, J. Zhao, M. Liu, Y. Li, and X. Yuan, “Clinical application of end-tidal carbon dioxide monitoring,” Med. Diagn., vol. 10, pp. 177, Sep. 2020. (查阅网上资料, 未找到本条文献信息, 请确认
|
| [58] |
Mass Thermography Screening for Infection and Prevention: A Review of the Clinical Effectiveness. Ottawa, Canadian: Canadian Agency for Drugs and Technologies in Health, 2014. (查阅网上资料, 未找到本条文献作者信息, 请确认
|
| [59] |
M. R. Baria, L. Shahgholi, E. J. Sorenson, C. J. Harper, K. G. Lim, J. A. Strommen, C. D. Mottram, and A. J. Boon, “B-mode ultrasound assessment of diaphragm structure and function in patients with COPD,” CHEST, vol. 146, no. 3, pp. 680–685, Sep. 2014. doi: 10.1378/chest.13-2306
|
| [60] |
I. B. Do Nascimento and R. Fleig, “Mobility impact and methods of diaphragm monitoring in patients with chronic obstructive pulmonary disease: A systematic review,” Clinics, vol. 75, p. e1428, Jan. 2020. doi: 10.6061/clinics/2020/e1428
|
| [61] |
T. Evrin, S. Korkut, L. Ozturk Sonmez, L. Szarpak, B. Katipoglu, J. Smereka, R. Guven, and E. E. Akpinar, “Evaluating stable chronic obstructive pulmonary disease by ultrasound,” Emerg. Med. Int., vol. 2019, no. 1, p. 5361620, Sep. 2019.
|
| [62] |
H. Mu and Q. Zhang, “The application of diaphragm ultrasound in chronic obstructive pulmonary disease: A narrative review,” COPD, vol. 21, no. 1, p. 2331202, Dec. 2024. doi: 10.1080/15412555.2024.2331202
|
| [63] |
M. Rauseo, E. Spinelli, N, Sella, D. Slobod, S. Spadaro, F. Longhini, et al, “Expert opinion document: “Electrical impedance tomography: Applications from the intensive care unit and beyond”,” J. Anesth. Analg. Crit. Care, vol. 2, no. 1, p. 28, Jun. 2022. doi: 10.1186/s44158-022-00055-6
|
| [64] |
A. Shahshahani, S. Bhadra, and Z. Zilic, “Ultrasound based respiratory monitoring evaluation under human body motions,” in Proc. IEEE SENSORS, New Delhi, India, 2018, pp. 1−4.
|
| [65] |
G. Bellani, A. Bronco, S. Arrigoni Marocco, M. Pozzi, V. Sala, N. Eronia, et al, “Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort,” Respir. Care, vol. 63, no. 11, pp. 1341–1349, Nov. 2018. doi: 10.4187/respcare.06176
|
| [66] |
L. Estrada, A. Torres, J. Garcia-Casado, Y. Ye-Lin, and R. Jané, “Evaluation of Laplacian diaphragm electromyographic recordings in a static inspiratory maneuver,” in Proc. XIII Mediterranean Conf. Medical and Biological Engineering and Computing, Seville, Spain, 2013, pp. 977−980.
|
| [67] |
K. Shelley and S. Shelley, “Pulse oximeter waveform: Photoelectric plethysmography,” in Clinical Monitoring: Practical Applications for Anesthesia and Critical Care, C. Lake, R. Hines, and C. Blitt, Eds. W.B. Saunders Company, 2001, pp. 420−423. (查阅网上资料, 未找到本条文献出版地信息, 请确认
|
| [68] |
D. Jarchi and S. Sanei, “Derivation of respiratory effort from photoplethysmography,” in Proc. 27th European Signal Processing Conf., A Coruna, Spain, 2019, pp. 1−5.
|
| [69] |
X. Gao, E. Shahhaidar, C. Stickley, and O. Boric-Lubecke, “Respiratory angle of thoracic wall movement during lung ventilation,” IEEE Sens. J., vol. 16, no. 13, pp. 5195–5201, Jul. 2016. doi: 10.1109/JSEN.2016.2561242
|
| [70] |
U. Saeed, S. Y. Shah, A. Zahid, J. Ahmad, M. A. Imran, Q. H. Abbasi, and S. A. Shah, “Wireless channel modelling for identifying six types of respiratory patterns with SDR sensing and deep multilayer perceptron,” IEEE Sens. J., vol. 21, no. 18, pp. 20833–20840, Sep. 2021. doi: 10.1109/JSEN.2021.3096641
|
| [71] |
K. Zhu, M. Li, S. Akbarian, M. Hafezi, A. Yadollahi, and B. Taati, “Vision-based heart and respiratory rate monitoring during sleep – a validation study for the population at risk of sleep apnea,” IEEE J. Transl. Eng. Health Med., vol. 7, p. 1900708, Oct. 2019. doi: 10.1109/jtehm.2019.2946147
|
| [72] |
E. S. S. Dagar and R. K. Sunkaria, “Analysis of respiratory signals in spectral domain for detecting respiratory disorders with emphasis on COVID-19,” in Proc. 2nd Int. Conf. Advance Computing and Innovative Technologies in Engineering, Greater Noida, India, 2022, pp. 2088−2093.
|
| [73] |
K. Y. Hwang, V. O. Jimenez, B. Muchharla, T. Eggers, A. T. Le, V. D. Lam, and M. H. Phan, “A novel magnetic respiratory sensor for human healthcare,” Appl. Sci., vol. 11, no. 8, p. 3585, Jan. 2021. doi: 10.3390/app11083585
|
| [74] |
A. De Troyer and M. Estenne, “Functional anatomy of the respiratory muscles,” Clin. Chest Med., vol. 9, no. 2, pp. 175–193, Jun. 1988. doi: 10.1016/S0272-5231(21)00498-6
|
| [75] |
E. A. Pelaez and E. R. Villegas, “LED power reduction trade-offs for ambulatory pulse oximetry,” in Proc. 29th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007, pp. 2296−2299.
|
| [76] |
K. H. Shelley, D. H. Jablonka, A. A. Awad, R. G. Stout, H. Rezkanna, and D. G. Silverman, “What is the best site for measuring the effect of ventilation on the pulse oximeter waveform?,” Anesth. Analg., vol. 103, no. 2, pp. 372–377, Aug. 2006. doi: 10.1213/01.ane.0000222477.67637.17
|
| [77] |
S. Acharya, W. M. Mongan, I. Rasheed, Y. Liu, E. Anday, G. Dion, A. Fontecchio, T. Kurzweg, and K. R. Dandekar, “Ensemble learning approach via Kalman filtering for a passive wearable respiratory monitor,” IEEE J. Biomed. Health Inf., vol. 23, no. 3, pp. 1022–1031, May 2019. doi: 10.1109/JBHI.2018.2857924
|
| [78] |
M. Rauseo, E. Spinelli, N, Sella, D. Slobod, S. Spadaro, F. Longhini, et al, “Expert opinion document: “Electrical impedance tomography: Applications from the intensive care unit and beyond”,” J. Anesth. Analg. Crit. Care, vol. 2, no. 1, p. 28, Jun. 2022. doi: 10.1186/s44158-022-00055-6
|
| [79] |
G. K. Wolf, C. Gómez-Laberge, J. S. Rettig, S. O. Vargas, C. D. Smallwood, S. P. Prabhu, S. H. Vitali, D. Zurakowski, and J. H. Arnold, “Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury,” Crit. Care Med., vol. 41, no. 5, pp. 1296–1304, May 2013. doi: 10.1097/CCM.0b013e3182771516
|
| [80] |
S. S. Carson, C. E. Cox, G. M. Holmes, A. Howard, and T. S. Carey, “The changing epidemiology of mechanical ventilation: A population-based study,” J. Intensive Care Med., vol. 21, no. 3, pp. 173–182, May 2006. doi: 10.1177/0885066605282784
|
| [81] |
N. A. Halpern, D. A. Goldman, K. S. Tan, and S. M. Pastores, “Trends in critical care beds and use among population groups and Medicare and Medicaid beneficiaries in the United States: 2000−2010,” Crit. Care Med., vol. 44, no. 8, pp. 1490–1499, Aug. 2016. doi: 10.1097/CCM.0000000000001722
|
| [82] |
A. Esteban, A. Anzueto, I. Alía, F. Gordo, C. Apezteguía, F. Pálizas, et al, “How is mechanical ventilation employed in the intensive care unit? An international utilization review,” Am. J. Respir. Crit. Care Med., vol. 161, no. 5, pp. 1450–1458, May 2000. doi: 10.1164/ajrccm.161.5.9902018
|
| [83] |
J. M. Walter, T. C. Corbridge, and B. D. Singer, “Invasive mechanical ventilation,” South Med. J., vol. 111, no. 12, pp. 746–753, Dec. 2018. doi: 10.14423/SMJ.0000000000000905
|
| [84] |
D. Quevedo‐Moreno, S. Lee, J. Tagoe, V. Emani, J. Bonnemain, and E. T. Roche, “Design, modeling, and control of a soft robotic diaphragm-assist device in a respiratory simulator,” Adv. Intell. Syst., vol. 7, no. 7, p. 2401087, Jul. 2025. doi: 10.1002/aisy.202401087
|
| [85] |
W. Zhi, W. Zhao, Y. Zhang, E. Shi, Y. Zhou, and B. Zhang, “Thoraco-abdominal biomechanical model and dual-layer control method for soft robotic system with application to respiratory assistance,” Front. Bioeng. Biotechnol., vol. 13, p. 1581402, Apr. 2025. doi: 10.3389/fbioe.2025.1581402
|
| [86] |
Y. Sheng, T. Wang, X. Zhang, W. Shao, Y. Wang, X. Kang, et al, “Effects of external diaphragmatic pacing with neurally adjusted ventilatory assist on diaphragm function in AECOPD patients,” Sci. Rep., vol. 15, no. 1, p. 19340, Jun. 2025. doi: 10.1038/s41598-025-04352-2
|
| [87] |
E. J. McCaughey, C. L. Boswell-Ruys, A. L. Hudson, S. C. Gandevia, and J. E. Butler, “Optimal electrode position for abdominal functional electrical stimulation,” J. Appl. Physiol., vol. 125, no. 4, pp. 1062–1068, Oct. 2018. doi: 10.1152/japplphysiol.00446.2018
|
| [88] |
A. A. A. Saeg and H. Alnori, “Laryngeal injury and dysphonia after endotracheal intubation,” J. Med. Life, vol. 14, no. 3, pp. 355–360, May-Jun. 2021. doi: 10.25122/jml-2020-0148
|
| [89] |
A. Carlucci, J.-C. Richard, M. Wysocki, E. Lepage, L. Brochard, and the SRLF Collaborative Group on Mechanical Ventilation, “Noninvasive versus conventional mechanical ventilation: An epidemiologic survey,” Am. J. Respir. Crit. Care Med., vol. 163, no. 4, pp. 874–880, Mar. 2001. doi: 10.1164/ajrccm.163.4.2006027
|
| [90] |
P. Pierucci, A. Portacci, G. E. Carpagnano, P. Banfi, C. Crimi, G. Misseri, and C. Gregoretti, “The right interface for the right patient in noninvasive ventilation: A systematic review,” Expert Rev. Respir. Med., vol. 16, no. 8, pp. 931–944, Aug. 2022. doi: 10.1080/17476348.2022.2121706
|
| [91] |
D. Robert and L. Argaud, “Clinical review: Long-term noninvasive ventilation,” Crit. Care, vol. 11, no. 2, p. 210, Mar. 2007.
|
| [92] |
I. Bergbom-Engberg and H. Haljamäe, “Assessment of patients’ experience of discomforts during respirator therapy,” Crit. Care Med., vol. 17, no. 10, pp. 1068–1072, Oct. 1989. doi: 10.1097/00003246-198910000-00021
|
| [93] |
B. Schönhofer and S. Sortor-Leger, “Equipment needs for noninvasive mechanical ventilation,” Eur. Respir. J., vol. 20, no. 4, pp. 1029–1036, Oct. 2002. doi: 10.1183/09031936.02.00404202
|
| [94] |
D. Chiumello, P. Pelosi, E. Carlesso, P. Severgnini, M. Aspesi, C. Gamberoni, M. Antonelli, G. Conti, M. Chiaranda, and L. Gattinoni, “Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask,” Intensive Care Med., vol. 29, no. 10, pp. 1671–1679, Oct. 2003. doi: 10.1007/s00134-003-1825-9
|
| [95] |
F. M. Hardinge, R. J. Davies, and J. R. Stradling, “Effects of short term high frequency negative pressure ventilation on gas exchange using the Hayek oscillator in normal subjects.,” Thorax, vol. 50, no. 1, pp. 44–49, Jan. 1995. doi: 10.1136/thx.50.1.44
|
| [96] |
C. R. Collier and J. E. Affeldt, “Ventilatory efficiency of the cuirass respirator in totally paralyzed chronic poliomyelitis patients,” J. Appl. Physiol., vol. 6, no. 9, pp. 531–538, Mar. 1954. doi: 10.1152/jappl.1954.6.9.531
|
| [97] |
S. A. Spitzer, G. Fink, and M. Mittelman, “External high-frequency ventilation in severe chronic obstructive pulmonary disease,” CHEST, vol. 104, no. 6, pp. 1698–1701, Dec. 1993. doi: 10.1378/chest.104.6.1698
|
| [98] |
F. Plum and G. D. Whedon, “The rapid-rocking bed: Its effect on the ventilation of poliomyelitis patients with respiratory paralysis,” N. Engl. J. Med., vol. 245, no. 7, pp. 235–241, Aug. 1951. doi: 10.1056/NEJM195108162450701
|
| [99] |
J. P. Adamson, L. Lewis, and J. D. Stein, “Application of abdominal pressure for artificial respiration,” J. Am. Med. Assoc., vol. 169, no. 14, pp. 1613–1617, Apr. 1959. doi: 10.1001/jama.1959.03000310065014
|
| [100] |
N. S. Hill, “Chapter 17. Noninvasive respiratory AIDS: Rocking bed, pneumobelt, and glossopharyngeal breathing,” in Principles and Practice of Mechanical Ventilation, M. J. Tobin, Ed. New York, USA: The McGraw-Hill Companies, 2013.
|
| [101] |
J. R. Bach, “Update and perspective on noninvasive respiratory muscle aids: Part 2: The expiratory aids,” CHEST, vol. 105, no. 5, pp. 1538–1544, May 1994. doi: 10.1378/chest.105.5.1538
|
| [102] |
J. R. Bach, “Mechanical insufflation-exsufflation: Comparison of peak expiratory flows with manually assisted and unassisted coughing techniques,” CHEST, vol. 104, no. 5, pp. 1553–1562, Nov. 1993.
|
| [103] |
S.-Y. Lee, U. Jeong, and K.-J. Cho, “An application of user-friendly control for a Respiratory Rehabilitation and Assistance Robot,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Busan, Korea (South), 2015, pp. 441−446.
|
| [104] |
Y. Zhang, Q. Ge, Z. Wang, Y. Qin, Y. Wu, M. Wang, et al, “Extracorporeal closed-loop respiratory regulation for patients with respiratory difficulty using a soft bionic robot,” IEEE Trans. Biomed. Eng., vol. 71, no. 10, pp. 2923–2935, Oct. 2024. doi: 10.1109/TBME.2024.3401713
|
| [105] |
Z. Zhu, B. Cong, F. Liu, T. Liu, J. Yi, and Y. Inoue, “Design of respiratory training robot in rehabilitation of chronic obstructive pulmonary disease,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Busan, Korea (South), 2015, pp. 866−870.
|
| [106] |
L. Hu, “Soft robotics applied to the development of a diaphragm assist system,” Massachusetts Institute of Technology, Cambridge, USA, 2022. (查阅网上资料, 未找到本条文献论文属性信息, 请确认
|
| [107] |
A. J. Krieger, M. R. Gropper, and R. J. Adler, “Electrophrenic respiration after intercostal to phrenic nerve anastomosis in a patient with anterior spinal artery syndrome: Technical case report,” Neurosurgery, vol. 35, no. 4, pp. 760–763, Oct. 1994. doi: 10.1227/00006123-199410000-00028
|
| [108] |
V. Lin and I. N. Hsiao, “Functional neuromuscular stimulation of the respiratory muscles for patients with spinal cord injury,” Proc. IEEE, vol. 96, no. 7, pp. 1096–1107, Jul. 2008. doi: 10.1109/JPROC.2008.922572
|
| [109] |
J. R. Bach and K. O’Connor, “Electrophrenic ventilation: A different perspective,” J. Am. Paraplegia Soc., vol. 14, no. 1, pp. 9–17, Jan. 1991. doi: 10.1080/01952307.1991.11735829
|
| [110] |
J. Moxham and J. M. Shneerson, “Diaphragmatic pacing,” Am. Rev. Respir. Dis., vol. 148, no. 2, pp. 533–536, Aug. 1993. doi: 10.1164/ajrccm/148.2.533
|
| [111] |
X. Yin, S. Niu, H. Chen, J. Xu, and X. Feng, “Research progress on application of respiratory electrical stimulation in early pulmonary rehabilitation,” Chin. Nurs. Res., vol. 37, no. 21, pp. 3894–3898, Nov. 2023.
|
| [112] |
A. F. DiMarco, G. S. Supinski, J. A. Petro, and Y. Takaoka, “Evaluation of intercostal pacing to provide artificial ventilation in quadriplegics.,” Am. J. Respir. Crit. Care Med., vol. 150, no. 4, pp. 934–940, Oct. 1994. doi: 10.1164/ajrccm.150.4.7921466
|
| [113] |
E. Agostoni, P. Mognoni, G. Torri, and A. F. Agostoni, “Static features of the passive rib cage and abdomen-diaphragm,” J. Appl. Physiol., vol. 20, no. 6, pp. 1187–1193, Nov. 1965. doi: 10.1152/jappl.1965.20.6.1187
|
| [114] |
E. J. McCaughey, A. H. Jonkman, C. L. Boswell-Ruys, R. A. Mcbain, E. A. Bye, A. L. Hudson, et al, “Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: A double-blinded, randomised, sham-controlled pilot study,” Crit. Care, vol. 23, p. 261, Jul. 2019. doi: 10.1186/s13054-019-2544-0
|
| [115] |
E. J. McCaughey, H. R. Berry, A. N. McLean, D. B. Allan, and H. Gollee, “Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: A cohort study,” PLoS One, vol. 10, no. 6, p. e0128589, Jun. 2015. doi: 10.1371/journal.pone.0128589
|
| [116] |
S. C. Reynolds, R. Meyyappan, V. Thakkar, B. D. Tran, M. A. Nolette, G. Sadarangani, et al, “Mitigation of ventilator-induced diaphragm atrophy by transvenous phrenic nerve stimulation,” Am. J. Respir. Crit. Care Med., vol. 195, no. 3, pp. 339–348, Feb. 2017. doi: 10.1164/rccm.201502-0363OC
|
| [117] |
A. F. DiMarco, “Phrenic nerve stimulation in patients with spinal cord injury,” Respir. Physiol. Neurobiol., vol. 169, no. 2, pp. 200–209, Nov. 2009. doi: 10.1016/j.resp.2009.09.008
|
| [118] |
V. W. Lin, J. R. Romaniuk, and A. F. DiMarco, “Functional magnetic stimulation of the respiratory muscles in dogs,” Muscle Nerve, vol. 21, no. 8, pp. 1048–1057, Aug. 1998. doi: 10.1002/(SICI)1097-4598(199808)21:8<1048::AID-MUS9>3.0.CO;2-8
|
| [119] |
V. W. Lin, I. Hsiao, X. Deng, Y.-S. Lee, and S. Sasse, “Functional magnetic ventilation in dogs,” Arch. Phys. Med. Rehabil., vol. 85, no. 9, pp. 1493–1498, Sep. 2004.
|
| [120] |
L. Lu, Y. Wang, G. Shen, and M. Du, “Adaptive control of airway pressure during the expectoration process in a cough assist system,” Front. Bioeng. Biotechnol., vol. 12, p. 1477886, Oct. 2024. doi: 10.3389/fbioe.2024.1477886
|
| [121] |
Y. Zhang, D. Li, F. Zhang, Z. Wang, L. Xue, X. Nan, et al, “Evaluation and modeling of diaphragm displacement using ultrasound imaging for wearable respiratory assistive robot,” Front. Bioeng. Biotechnol., vol. 12, p. 1436702, Aug. 2024. doi: 10.3389/fbioe.2024.1436702
|
| [122] |
P. J. Wijkstra, H. Van Der Aa, H. S. Hofker, F. Curto, M. Giacomini, G. Stagni, et al, “Diaphragm pacing in patients with spinal cord injury: A European experience,” Respiration, vol. 101, no. 1, pp. 18–24, 2022. doi: 10.1159/000517401
|
| [123] |
V. Lin and I. N. Hsiao, “Functional neuromuscular stimulation of the respiratory muscles for patients with spinal cord injury,” Proc. IEEE, vol. 96, no. 7, pp. 1096–1107, Jul. 2008. doi: 10.1109/JPROC.2008.922572
|
| [124] |
L. Zeng, G. Duan, D. Liu, and H. Wu, “Application effect of external diaphragm pacemaker combined with active respiratory circulation technology in pulmonary rehabilitation of perioperative lung cancer patients,” JCT, vol. 15, no. 4, pp. 190–200, Apr. 2024. doi: 10.4236/jct.2024.154017
|
| [125] |
Q. Bao, L. Chen, X. Chen, T. Li, C. Xie, Z. Zou, C. Huang, Y. Zhi, and Z. He, “The effects of external diaphragmatic pacing on diaphragm function and weaning outcomes of critically ill patients with mechanical ventilation: A prospective randomized study,” Ann. Transl. Med., vol. 10, no. 20, p. 1100, Oct. 2022. doi: 10.21037/atm-22-4145
|
| [126] |
E. J. McCaughey, R. J. Borotkanics, H. Gollee, R. J. Folz, and A. J. McLachlan, “Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: A systematic review and meta-analysis,” Spinal Cord, vol. 54, no. 9, pp. 628–639, Sep. 2016. doi: 10.1038/sc.2016.31
|
| [127] |
A. F. DiMarco, J. R. Romaniuk, and G. S. Supinski, “Electrical activation of the expiratory muscles to restore cough.,” Am. J. Respir. Crit. Care Med., vol. 151, no. 5, pp. 1466–1471, May 1995. doi: 10.1164/ajrccm.151.5.7735601
|
| [128] |
A. F. DiMarco, J. R. Romaniuk, K. E. Kowalski, and G. S. Supinski, “Efficacy of combined inspiratory intercostal and expiratory muscle pacing to maintain artificial ventilation,” Am. J. Respir. Crit. Care Med., vol. 156, no. 1, pp. 122–126, Jul. 1997. doi: 10.1164/ajrccm.156.1.9609103
|
| [129] |
G. Cosendai, C. De Balthasar, A. R. Ignagni, R. P. Onders, K. Bradley, K. Purnell, J. T. Mortimer, R. Davis, Y. Zilberman, and J. Schulman, “A preliminary feasibility study of different implantable pulse generators technologies for diaphragm pacing system,” Neuromodulation, vol. 8, no. 3, pp. 203–211, Jul. 2005. doi: 10.1111/j.1525-1403.2005.05239.x
|
| [130] |
A. R. Schwartz, L. R. Goldberg, S. McKane, and T. I. Morgenthaler, “Transvenous phrenic nerve stimulation improves central sleep apnea, sleep quality, and quality of life regardless of prior positive airway pressure treatment,” Sleep Breath, vol. 25, no. 4, pp. 2053–2063, Dec. 2021. doi: 10.1007/s11325-021-02335-x
|
| [131] |
M. Baumert, S. Immanuel, S. McKane, and D. Linz, “Transvenous phrenic nerve stimulation for the treatment of central sleep apnea reduces episodic hypoxemic burden,” Int. J. Cardiol., vol. 378, pp. 89–95, May 2023. doi: 10.1016/j.ijcard.2023.02.041
|
| [132] |
X. Zhang, E. Plow, V. Ranganthan, H. Huang, M. Schmitt, G. Nemunaitis, C. Kelly, F. Frost, and V. Lin, “Functional magnetic stimulation of inspiratory and expiratory muscles in subjects with tetraplegia,” PM R, vol. 8, no. 7, pp. 651–659, Jul. 2016. doi: 10.1016/j.pmrj.2016.01.016
|
| [133] |
V. W. H. Lin, C. Hsieh, I. N. Hsiao, and J. Canfield, “Functional magnetic stimulation of expiratory muscles: A noninvasive and new method for restoring cough,” J. Appl. Physiol., vol. 84, no. 4, pp. 1144–1150, Apr. 1998. doi: 10.1152/jappl.1998.84.4.1144
|
| [134] |
Y. Wang, Y. Zhang, Y. Zhang, Z. Wang, W. Guo, Y. Zhang, Y. Wang, Q. Ge, and D. Wang, “Voluntary respiration control: Signature analysis by EEG,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31, pp. 4624–4634, Nov. 2023. doi: 10.1109/TNSRE.2023.3332458
|
| [135] |
E. Harbour, M. Lasshofer, M. Genitrini, and H. Schwameder, “Enhanced breathing pattern detection during running using wearable sensors,” Sensors, vol. 21, no. 16, p. 5606, Aug. 2021. doi: 10.3390/s21165606
|
| [136] |
K. McClure, B. Erdreich, J. H. T. Bates, R. S. McGinnis, A. Masquelin, and S. Wshah, “Classification and detection of breathing patterns with wearable sensors and deep learning,” Sensors, vol. 20, no. 22, p. 6481, Nov. 2020. doi: 10.3390/s20226481
|
| [137] |
E. Aghajari and A. AbdulKarim AbdulRahim, “Prediction of short circuit current of wind turbines based on artificial neural network model,” EAI Endorsed Trans. AI Robot., vol. 3, no. 1, Jul. 2024. (查阅网上资料, 未找到本条文献页码信息, 请确认
|
| [138] |
A. J. Moshayedi, A. S. Roy, A. Kolahdooz, and Y. Shuxin, “Deep learning application pros and cons over algorithm,” EAI Endorsed Trans. AI Robot., vol. 1, p. e7, Feb. 2022. doi: 10.4108/airo.v1i.19
|
| [139] |
T. Subba and T. Chingtham, “Comparative analysis of machine learning algorithms with advanced feature extraction for ECG signal classification,” IEEE Access, vol. 12, pp. 57727–57740, Apr. 2024. doi: 10.1109/ACCESS.2024.3387041
|
| [140] |
M. Davari, A. Harooni, A. Nasr, K. Savoji, and M. Soleimani, “Improving recognition accuracy for facial expressions using scattering wavelet,” EAI Endorsed Trans. AI Robot., vol. 3, Mar. 2024. (查阅网上资料, 未找到本条文献页码信息, 请确认
|
| [141] |
M. R. Güell, P. Cejudo, G. Rodríguez-Trigo, J. B. Gàldiz, V. Casolive, M. Regueiro, and J. J. Soler-Cataluña, “Standards for quality care in respiratory rehabilitation in patients with chronic pulmonary disease,” Arch. Bronconeumol, vol. 48, no. 11, pp. 396–404, Nov. 2012.
|
| [142] |
Y. Chen, P. Zhang, Y. Li, K. Zhang, J. Su, and L. Huang, “Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes,” J. Phys. D: Appl. Phys., vol. 54, no. 15, p. 155101, Jan. 2021. doi: 10.1088/1361-6463/abd9ec
|
| [143] |
A. Rohit and S. Kaya, “Flexible multi-modal capacitive sensors with polyurethane foam dielectrics for wearables,” in Proc. IEEE Int. Flexible Electronics Technology Conf., Columbus, USA, 2021, pp. 0041-0043.
|
| [144] |
J. Kim and J. Kim, “Classification of breathing signals according to human motions by combining 1D convolutional neural network and embroidered textile sensor,” Sensors, vol. 23, no. 12, p. 5736, Jun. 2023. doi: 10.3390/s23125736
|
| [145] |
I. Costanzo, D. Sen, L. Rhein, and U. Guler, “Respiratory monitoring: Current state of the art and future roads,” IEEE Rev. Biomed. Eng., vol. 15, pp. 103–121, Nov. 2022. doi: 10.1109/RBME.2020.3036330
|
| [146] |
T. Zhao, Z. Li, W. Liu, X. Fu, Y. Zhou, and L. Zhou, “Unconstrained respiratory event detection using a flexible tactile sensor,” IEEE Sens. J., vol. 24, no. 19, pp. 30095–30103, Oct. 2024. doi: 10.1109/JSEN.2024.3442240
|
| [147] |
T. Troosters, A. Blondeel, W. Janssens, and H. Demeyer, “The past, present and future of pulmonary rehabilitation,” Respirology, vol. 24, no. 9, pp. 830–837, Sep. 2019. doi: 10.1111/resp.13517
|
| [148] |
A. E. Holland, K. Wadell, and M. A. Spruit, “How to adapt the pulmonary rehabilitation programme to patients with chronic respiratory disease other than COPD,” Eur. Respir. Rev., vol. 22, no. 130, pp. 577–586, Dec. 2013. doi: 10.1183/09059180.00005613
|
| [149] |
L. Nici, J. Raskin, C. L. Rochester, J. C. Bourbeau, B. W. Carlin, R. Casaburi, et al, “Pulmonary rehabilitation: WHAT WE KNOW AND WHAT WE NEED TO KNOW,” J. Cardiopulm. Rehabil. Prev., vol. 29, no. 3, pp. 141–151, May-Jun. 2009. doi: 10.1097/HCR.0b013e3181a3324a
|
| [150] |
C. L. Rochester, J. A. Alison, B. Carlin, A. R. Jenkins, N. S. Cox, G. Bauldoff, et al, “Pulmonary rehabilitation for adults with chronic respiratory disease: An official American thoracic society clinical practice guideline,” Am. J. Respir. Crit. Care Med., vol. 208, no. 4, pp. e7–e26, Aug. 2023. doi: 10.1164/rccm.202306-1066ST
|
| [151] |
E. Fan, D. W. Dowdy, E. Colantuoni, P. A. Mendez-Tellez, J. E. Sevransky, C. Shanholtz, et al, “Physical complications in acute lung injury survivors: A two-year longitudinal prospective study,” Crit. Care Med., vol. 42, no. 4, pp. 849–859, Apr. 2014. doi: 10.1097/CCM.0000000000000040
|
| [152] |
M. S. Herridge, L. M. Chu, A. Matte, G. Tomlinson, L. Chan, C. Thomas, et al, “The RECOVER program: Disability risk groups and 1-year outcome after 7 or more days of mechanical ventilation,” Am. J. Respir. Crit. Care Med., vol. 194, no. 7, pp. 831–844, Oct. 2016. doi: 10.1164/rccm.201512-2343OC
|
| [153] |
J. J. Cragg, F. M. Warner, J. K. Kramer, and J. F. Borisoff, “A Canada-wide survey of chronic respiratory disease and spinal cord injury,” Neurology, vol. 84, no. 13, pp. 1341–1345, Mar. 2015. doi: 10.1212/WNL.0000000000001428
|
| [154] |
M. B. Zimmer, K. Nantwi, and H. G. Goshgarian, “Effect of spinal cord injury on the respiratory system: Basic research and current clinical treatment options,” J. Spinal Cord Med., vol. 30, no. 4, pp. 319–330, Feb. 2007. doi: 10.1080/10790268.2007.11753947
|
| [155] |
D. A. Mahler, “Pulmonary rehabilitation,” CHEST, vol. 113, no. S4, pp. 263S–268S, Apr. 1998. doi: 10.1201/b13288-29
|
| [156] |
N. Charususin, R. Gosselink, M. Decramer, H. Demeyer, A. Mcconnell, D. Saey, et al, “Randomised controlled trial of adjunctive inspiratory muscle training for patients with COPD,” Thorax, vol. 73, no. 10, pp. 942–950, Oct. 2018. doi: 10.1136/thoraxjnl-2017-211417
|
| [157] |
K. Hill, V. Cavalheri, S. Mathur, M. Roig, T. Janaudis-Ferreira, P. Robles, T. E. Dolmage, and R. Goldstein, “Neuromuscular electrostimulation for adults with chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., vol. 2018, no. 5, p. CD010821, May 2018. doi: 10.1002/14651858.cd010821.pub2
|
| [158] |
A. De Troyer, P. A. Kirkwood, and T. A. Wilson, “Respiratory action of the intercostal muscles,” Physiol. Rev., vol. 85, no. 2, pp. 717–756, Apr. 2005. doi: 10.1152/physrev.00007.2004
|
| [159] |
A. De Troyer and A. M. Boriek, “Mechanics of the respiratory muscles,” Compr. Physiol., vol. 1, no. 3, pp. 1273–1300, Jul. 2011. doi: 10.1002/j.2040-4603.2011.tb00356.x
|
| [160] |
J.-G. Ma, B. Zhu, L. Jiang, Q. Jiang, and X.-M. Xi, “Gender- and age-based differences in outcomes of mechanically ventilated ICU patients: A Chinese multicentre retrospective study,” BMC Anesthesiol., vol. 22, no. 1, p. 18, Dec. 2022. doi: 10.1186/s12871-021-01555-8
|
| [161] |
Z.-H. Shi, H. De Vries, H. J. De Grooth, A. H. Jonkman, Y. R. Zhang, M. Haaksma, et al, “Changes in respiratory muscle thickness during mechanical ventilation: Focus on expiratory muscles,” Anesthesiology, vol. 134, no. 5, pp. 748–759, May 2021. doi: 10.1097/ALN.0000000000003736
|
| [162] |
M. Orozco-Levi, J. Lloreta, J. Minguella, S. Serrano, J. M. Broquetas, and J. Gea, “Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med., vol. 164, no. 9, pp. 1734–1739, Nov. 2001. doi: 10.1164/ajrccm.164.9.2011150
|
| [163] |
D. B. Popović, “Advances in functional electrical stimulation (FES),” J. Electromyogr. Kinesiol., vol. 24, no. 6, pp. 795–802, Dec. 2014. doi: 10.1016/j.jelekin.2014.09.008
|
| [164] |
Z. Zhou, W. Wang, R. Yang, Y. Wang, L. Zhu, and Y. Huang, “Bio-Z-based feedback-controlled external diaphragm pacing system,” IEEE Trans. Circuits Syst. II, vol. 70, no. 8, pp. 2779–2783, Aug. 2023. doi: 10.1109/tcsii.2023.3255902
|
| [165] |
C. Keogh, F. Saavedra, S. Dubo, P. Aqueveque, P. Ortega, B. Gomez, et al, “Closed‐loop parameter optimization for patient‐specific phrenic nerve stimulation,” Artif. Organs, vol. 48, no. 3, pp. 274–284, Mar. 2024. doi: 10.1111/aor.14593
|
| [166] |
I. A. F. Stokes, M. G. Gardner-Morse, and S. M. Henry, “Intra-abdominal pressure and abdominal wall muscular function: Spinal unloading mechanism,” Clin. Biomech., vol. 25, no. 9, pp. 859–866, Nov. 2010. doi: 10.1016/j.clinbiomech.2010.06.018
|
| [167] |
A. De Troyer, M. Estenne, V. Ninane, D. Van Gansbeke, and M. Gorini, “Transversus abdominis muscle function in humans,” J. Appl. Physiol., vol. 68, no. 3, pp. 1010–1016, Mar. 1990. doi: 10.32388/s7peq3
|
| [168] |
A. De Troyer and A. M. Boriek, “Mechanics of the respiratory muscles,” Compr. Physiol., vol. 1, no. 3, pp. 1273–1300, Jul. 2011. doi: 10.1002/j.2040-4603.2011.tb00356.x
|
| [169] |
A. De Troyer, M. Estenne, and A. Heilporn, “Mechanism of active expiration in tetraplegic subjects,” N. Engl. J. Med., vol. 314, no. 12, pp. 740–744, Mar. 1986. doi: 10.1056/NEJM198603203141203
|
| [170] |
R. Boulding, R. Stacey, R. Niven, and S. J. Fowler, “Dysfunctional breathing: A review of the literature and proposal for classification,” Eur. Respir. Rev., vol. 25, no. 141, pp. 287–294, Sep. 2016. doi: 10.1183/16000617.0088-2015
|
| [171] |
M. Polastri, E. M. Clini, S. Nava, and N. Ambrosino, “Manual massage therapy for patients with COPD: A scoping review,” Medicina, vol. 55, no. 5, p. 151, May 2019. doi: 10.3390/medicina55050151
|
| [172] |
K. McDonald, A. Rendos, S. Woodman, K. A. Brown, and T. Ranzani, “Magnetorheological fluid-based flow control for soft robots,” Adv. Intell. Syst., vol. 2, no. 11, p. 2070107, Nov. 2020. doi: 10.1002/aisy.202070107
|
| [173] |
P. Karipoth, A. Christou, A. Pullanchiyodan, and R. Dahiya, “Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing,” Adv. Intell. Syst., vol. 4, no. 2, p. 2100092, Feb. 2022.
|
| [174] |
H. Banerjee and H. Ren, “Optimizing double-network hydrogel for biomedical soft robots,” Soft Robot., vol. 4, no. 3, pp. 191–201, Sep. 2017. doi: 10.1089/soro.2016.0059
|
| [175] |
I. M. Koo, K. Jung, J. C. Koo, J.-D. Nam, Y. K. Lee, and H. R. Choi, “Development of soft-actuator-based wearable tactile display,” IEEE Trans. Robot., vol. 24, no. 3, pp. 549–558, Jun. 2008. doi: 10.1109/TRO.2008.921561
|
| [176] |
V. Sanchez, C. J. Walsh, and R. J. Wood, “Textile technology for soft robotic and autonomous garments,” Adv. Funct. Mater., vol. 31, no. 6, p. 2008278, Feb. 2021. doi: 10.1002/adfm.202008278
|
| [177] |
T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft robotic manipulators: A survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, Apr. 2018. doi: 10.1089/soro.2017.0007
|
| [178] |
C. D. Santina and D. Rus, “Control oriented modeling of soft robots: The polynomial curvature case,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 290–298, Apr. 2020. doi: 10.1109/LRA.2019.2955936
|
| [179] |
A. Y. Alkayas, A. T. Mathew, D. Feliu-Talegon, P. Deng, T. G. Thuruthel, and F. Renda, “Soft synergies: Model order reduction of hybrid soft-rigid robots via optimal strain parameterization,” IEEE Trans. Robot., vol. 41, pp. 1118–1137, 2025. doi: 10.1109/TRO.2024.3522182
|
| [180] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 11, pp. 8778–8790, Nov. 2023. doi: 10.1109/TNNLS.2022.3153039
|
| [181] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits Syst. II, vol. 69, no. 12, pp. 5169–5173, Dec. 2022. doi: 10.1109/tcsii.2022.3199158
|
| [182] |
P. Sun, R. Shan, and S. Wang, “An intelligent rehabilitation robot with passive and active direct switching training: Improving intelligence and security of human–robot interaction systems,” IEEE Robot. Automat. Mag., vol. 30, no. 1, pp. 72–83, Mar. 2023. doi: 10.1109/MRA.2022.3228490
|
| [183] |
C.-F. Chen, Z. Du, L. He, Y. Shi, J. Wang, G. Xu, Y. Zhang, D. Wu, and W. Dong, “Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance,” IEEE Access, vol. 7, pp. 169107–169122, Nov. 2019. doi: 10.1109/ACCESS.2019.2953302
|
| [184] |
L. Zheng, H. Wu, L. Yang, Y. Lao, Q. Lin, and R. Yang, “A novel respiratory follow-up robotic system for thoracic-abdominal puncture,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2368–2378, Mar. 2021. doi: 10.1109/TIE.2020.2973893
|
| [185] |
N. van de Wouw, B. Hunnekens, and S. Kamps, “Switching control of medical ventilation systems,” in Proc. Annu. American Control Conf., Milwaukee, USA, 2018, pp. 532−538.
|
| [186] |
M. J. Mador and K. Modi, “Comparing various exercise tests for assessing the response to pulmonary rehabilitation in patients with COPD,” J. Cardiopulm. Rehabil. Prev., vol. 36, no. 2, pp. 132–139, Mar. 2016. doi: 10.1097/HCR.0000000000000154
|
| [187] |
L. Nici, C. Donner, E. Wouters, R. Zuwallack, N. Ambrosino, J. Bourbeau, et al, “American thoracic society/European respiratory society statement on pulmonary rehabilitation,” Am. J. Respir. Crit. Care Med., vol. 173, no. 12, pp. 1390–1413, Jun. 2006. doi: 10.1164/rccm.200508-1211ST
|
| [188] |
S. Shokouhmand, S. Bhatt, and M. Faezipour, “Artificial intelligence in respiratory health: A review of AI-driven analysis of oral and nasal breathing sounds for pulmonary assessment,” Electronics, vol. 14, no. 10, p. 1994, May 2025. doi: 10.3390/electronics14101994
|
| [189] |
B. McCarthy, D. Casey, D. Devane, K. Murphy, E. Murphy, and Y. Lacasse, “Pulmonary rehabilitation for chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., vol. 2015, no. 2, p. CD003793, Feb. 2015. doi: 10.5005/jp/books/12063_13
|
| [190] |
C. L. Rochester, “Patient assessment and selection for pulmonary rehabilitation,” Respirology, vol. 24, no. 9, pp. 844–853, Sep. 2019. doi: 10.1111/resp.13616
|
| [191] |
R. L. ZuWallack, K. Patel, J. Z. Reardon, B. A. Clark, and E. A. Normandin, “Predictors of improvement in the 12-minute walking distance following a six-week outpatient pulmonary rehabilitation program,” CHEST, vol. 99, no. 4, pp. 805–808, Apr. 1991. doi: 10.1378/chest.99.4.805
|
| [192] |
L. Puente-Maestu, P. Palange, R. Casaburi, P. Laveneziana, F. Maltais, J. A. Neder, et al, “Use of exercise testing in the evaluation of interventional efficacy: An official ERS statement,” Eur. Respir. J., vol. 47, no. 2, pp. 429–460, Feb. 2016. doi: 10.1183/13993003.00745-2015
|
| [193] |
A. E. Holland, M. A. Spruit, T. Troosters, M. A. Puhan, V. Pepin, D. Saey, et al, “An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease,” Eur. Respir. J., vol. 44, no. 6, pp. 1428–1446, Dec. 2014. doi: 10.1183/09031936.00150314
|
| [194] |
L. Peno-Green, D. Verrill, M. Vitcenda, N. MacIntyre, and H. Graham, “Patient and program outcome assessment in pulmonary rehabilitation: An AACVPR statement,” J. Cardiopulm. Rehabil. Prev., vol. 29, no. 6, pp. 402–410, Nov.-Dec. 2009. doi: 10.1097/HCR.0b013e3181b4c8a6
|
| [195] |
M. K. Beauchamp, T. Janaudis-Ferreira, V. Parreira, J. M. Romano, L. Woon, R. S. Goldstein, and D. Brooks, “A randomized controlled trial of balance training during pulmonary rehabilitation for individuals with COPD,” CHEST, vol. 144, no. 6, pp. 1803–1810, Dec. 2013. doi: 10.1378/chest.13-1093
|
| [196] |
P. M. Meek and S. C. Lareau, “Critical outcomes in pulmonary rehabilitation: Assessment and evaluation of dyspnea and fatigue,” J. Rehabil. Res. Dev., vol. 40, no. 5 Suppl 2, pp. 13–24, Sep.-Oct. 2003. doi: 10.1682/jrrd.2003.10.0013
|
| [197] |
J. Wedzicha, J. Bestall, R. Garrod, R. Garnham, E. Paul, and P. Jones, “Randomized controlled trial of pulmonary rehabilitation in severe chronic obstructive pulmonary disease patients, stratified with the MRC dyspnoea scale,” Eur. Respir. J., vol. 12, no. 2, pp. 363–369, Aug. 1998. doi: 10.1183/09031936.98.12020363
|
| [198] |
V. A. Safonov and N. N. Tarasova, “Structural and functional organization of the respiratory center,” Hum. Physiol., vol. 32, no. 1, pp. 103–115, Jan. 2006. doi: 10.1134/S0362119706010166
|
| [199] |
T. N. Hutson, F. Rezaei, N. M. Gautier, J. Indumathy, E. Glasscock, and L. Iasemidis, “Directed connectivity analysis of the neuro-cardio- and respiratory systems reveals novel biomarkers of susceptibility to SUDEP,” IEEE Open J. Eng. Med. Biol., vol. 1, pp. 301–311, Nov. 2020. doi: 10.1109/OJEMB.2020.3036544
|
| [200] |
F. Alexiev, A.-K. Brill, S. R. Ott, S. Duss, M. Schmidt, and C. L. Bassetti, “Sleep-disordered breathing and stroke: Chicken or egg?,” J. Thorac. Dis, vol. 10, no. S34, pp. S4244–S4252, Dec. 2018. doi: 10.21037/jtd.2018.12.66
|
| [201] |
T. Bajd and M. Munih, “Basic functional electrical stimulation (FES) of extremities: An engineer’s view,” THC, vol. 18, no. 4−5, pp. 361–369, Nov. 2010.
|
| [202] |
J. H. Schulman, “The feasible FES system: Battery powered BION stimulator,” Proc. IEEE, vol. 96, no. 7, pp. 1226–1239, Jul. 2008. doi: 10.1109/JPROC.2008.922588
|
| [203] |
H. Jr. Plenk, “The role of materials biocompatibility for functional electrical stimulation applications,” Artif. Organs, vol. 35, no. 3, pp. 237–241, Mar. 2011. doi: 10.1111/j.1525-1594.2011.01221.x
|
| [204] |
F. Gibelli, G. Ricci, A. Sirignano, S. Turrina, and D. De Leo, “The increasing centrality of robotic technology in the context of nursing care: Bioethical implications analyzed through a scoping review approach,” J. Healthc. Eng., vol. 2021, p. 1478025, Aug. 2021. doi: 10.1155/2021/1478025
|
| [205] |
J.-W. Kim, Y.-L. Choi, S.-H. Jeong, and J. Han, “A care robot with ethical sensing system for older adults at home,” Sensors, vol. 22, no. 19, p. 7515, Oct. 2022. doi: 10.3390/s22197515
|
| [206] |
N. Martinez-Martin, Z. Luo, A. Kaushal, E. Adeli, A. Haque, S. S. Kelly, et al, “Ethical issues in using ambient intelligence in health-care settings,” Lancet Digit. Health, vol. 3, no. 2, pp. e115–e123, Feb. 2021. doi: 10.1016/S2589-7500(20)30275-2
|
Supplementary materials.pdf
|
|