| Citation: | C. Xu, J. Zhang, and H. Yu, “Control-communication co-optimization for wireless cloud robotic system via multi-agent transfer reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 1–16, Feb. 2026. doi: 10.1109/JAS.2025.125894 |
| [1] |
V. Dawarka and G. Bekaroo, “Building and evaluating cloud robotic systems: A systematic review,” Rob. Comput. Integr. Manuf., vol. 73, p. 102240, Feb. 2022. doi: 10.1016/j.rcim.2021.102240
|
| [2] |
M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain, “Resource allocation and service provisioning in multi-agent cloud robotics: A comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 23, no. 2, pp. 842–870, Feb. 2021. doi: 10.1109/COMST.2021.3061435
|
| [3] |
B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics and automation,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 398–409, Apr. 2015. doi: 10.1109/TASE.2014.2376492
|
| [4] |
Z. Sheng, S. Pfersich, A. Eldridge, J. Zhou, D. Tian, and V. C. M. Leung, “Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 64–74, Jan. 2019. doi: 10.1109/JAS.2019.1911324
|
| [5] |
X. Liu, Z. Zeng, and S. Wen, “Implementation of memristive neural network with full-function Pavlov associative memory,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 63, no. 9, pp. 1454–1463, Sep. 2016. doi: 10.1109/TCSI.2016.2570819
|
| [6] |
C. Xu, P. Zeng, H. Yu, X. Jin, and C. Xia, “WIA-NR: Ultra-reliable low-latency communication for industrial wireless control networks over unlicensed bands,” IEEE Netw., vol. 35, no. 1, pp. 258–265, Jan.-Feb. 2021. doi: 10.1109/MNET.011.2000308
|
| [7] |
J. Fan, L. Jin, P. Li, J. Liu, Z.-G. Wu, and W. Chen, “Coevolutionary neural dynamics considering multiple strategies for nonconvex optimization,” Tsinghua Sci. Technol., 2025. DOI: 10.26599/TST.2025.9010120.
|
| [8] |
Y. Qiu, S. Wu, J. Jiao, N. Zhang, and Q. Zhang, “Model-free control in wireless cyber-physical system with communication latency: A DRL method with improved experience replay,” IEEE Trans. Cybern., vol. 53, no. 7, pp. 4704–4717, Jul. 2023. doi: 10.1109/TCYB.2023.3275150
|
| [9] |
A. Singh and R. M. Hegde, “GEE maximization in UAV-aided mobile IoT networks using deep reinforcement learning,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Hyderabad, India, 2025, pp. 1−5.
|
| [10] |
M. Samir, C. Assi, S. Sharafeddine, and A. Ghrayeb, “Online altitude control and scheduling policy for minimizing AoI in UAV-assisted IoT wireless networks,” IEEE Trans. Mob. Comput., vol. 21, no. 7, pp. 2493–2505, Jul. 2022. doi: 10.1109/tmc.2020.3042925
|
| [11] |
Z. Wang, Y. Xue, L. Liu, H. Zhang, C. Qu, and C. Fang, “Multi-agent DRL-controlled connected and automated vehicles in mixed traffic with time delays,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 11, pp. 17676–17688, Nov. 2024. doi: 10.1109/TITS.2024.3435036
|
| [12] |
Z. Lv, C. Cheng, and H. Lv, “Multi-robot distributed communication in heterogeneous robotic systems on 5G networking,” IEEE Wirel. Commun., vol. 30, no. 2, pp. 98–104, Apr. 2023. doi: 10.1109/MWC.001.2200315
|
| [13] |
S. Alirezazadeh and L. A. Alexandre, “A survey on task allocation and scheduling in robotic network systems,” IEEE Internet Things J., vol. 12, no. 2, pp. 1484–1508, Jan. 2025. doi: 10.1109/JIOT.2024.3491944
|
| [14] |
X. Huang, L. He, X. Chen, L. Wang, and F. Li, “Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: A deep reinforcement learning approach,” IEEE Internet Things J., vol. 9, no. 11, pp. 8852–8868, Jun. 2022. doi: 10.1109/JIOT.2021.3116108
|
| [15] |
C. Xu, P. Zhang, H. Yu, and Y. Li, “D3QN-based multi-priority computation offloading for time-sensitive and interference-limited industrial wireless networks,” IEEE Trans. Veh. Technol., vol. 73, no. 9, pp. 13682–13693, Sep. 2024. doi: 10.1109/TVT.2024.3387567
|
| [16] |
C. Xu, Z. Tang, H. Yu, P. Zeng, and L. Kong, “Digital twin-driven collaborative scheduling for heterogeneous task and edge-end resource via multi-agent deep reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3056–3069, Oct. 2023. doi: 10.1109/JSAC.2023.3310066
|
| [17] |
C. Xu, P. Zhang, and H. Yu, “Lyapunov-guided resource allocation and task scheduling for edge computing cognitive radio networks via deep reinforcement learning,” IEEE Sens. J., vol. 25, no. 7, pp. 12253–12264, Apr. 2025. doi: 10.1109/JSEN.2025.3542972
|
| [18] |
Y. Zhao, J. Hu, K. Yang, and X. Wei, “A joint communication and control system for URLLC in industrial IoT,” IEEE Trans. Veh. Technol., vol. 72, no. 11, pp. 15074–15079, Nov. 2023. doi: 10.1109/TVT.2023.3281718
|
| [19] |
W. Cao, J. Yan, X. Yang, X. Luo, and X. Guan, “Communication-aware formation control of AUVs with model uncertainty and fading channel via integral reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 159–176, Jan. 2023. doi: 10.1109/JAS.2023.123021
|
| [20] |
Y. Liu, P. Zeng, J. Cui, and C. Xia, “Co-design of control, computation, and network scheduling based on reinforcement learning,” IEEE Internet Things J., vol. 11, no. 3, pp. 5249–5258, Feb. 2024. doi: 10.1109/JIOT.2023.3305708
|
| [21] |
Z. Lyu, C. Ren, and L. Qiu, “Movement and communication co-design in multi-UAV enabled wireless systems via DRL,” in Proc. IEEE 6th Int. Conf. Computer and Communications, Chengdu, China, 2020, pp. 220−226.
|
| [22] |
Z. Zhao, W. Liu, D. E. Quevedo, Y. Li, and B. Vucetic, “Deep learning for wireless-networked systems: A joint estimation-control-scheduling approach,” IEEE Internet Things J., vol. 11, no. 3, pp. 4535–4550, Feb. 2024. doi: 10.1109/JIOT.2023.3300074
|
| [23] |
T. Zhou, M. Chen, and J. Zou, “Reinforcement learning based data fusion method for multi-sensors,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1489–1497, Nov. 2020. doi: 10.1109/jas.2020.1003180
|
| [24] |
S. He, Z. An, J. Zhu, J. Zhang, Y. Huang, and Y. Zhang, “Beamforming design for multiuser uRLLC with finite blocklength transmission,” IEEE Trans. Wirel. Commun., vol. 20, no. 12, pp. 8096–8109, Dec. 2021. doi: 10.1109/TWC.2021.3090197
|
| [25] |
X. Gao, Y. Li, and H. Fan, “Stability in distribution of highly nonlinear hybrid stochastic delay systems by delay feedback control,” IEEE Trans. Autom. Control, vol. 69, no. 3, pp. 1834–1841, Mar. 2024. doi: 10.1109/TAC.2023.3328231
|
| [26] |
J. Liu, D. W. C. Ho, and L. Li, “A generic algorithm framework for distributed optimization over the time-varying network with communication delays,” IEEE Trans. Autom. Control, vol. 69, no. 1, pp. 371–378, Jan. 2024. doi: 10.1109/TAC.2023.3264784
|
| [27] |
C.-K. Zhang, Y. He, L. Jiang, and M. Wu, “Notes on stability of time-delay systems: Bounding inequalities and augmented lyapunov-krasovskii functionals,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5331–5336, Oct. 2017. doi: 10.1109/TAC.2016.2635381
|
| [28] |
C. Tan and H. Zhang, “Necessary and sufficient stabilizing conditions for networked control systems with simultaneous transmission delay and packet dropout,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4011–4016, Aug. 2017. doi: 10.1109/TAC.2016.2614887
|
| [29] |
T. Schauss, A. Peer, and M. Buss, “Parameter-space stability analysis of LTI time-delay systems with parametric uncertainties,” IEEE Trans. Autom. Control, vol. 63, no. 11, pp. 3927–3934, Nov. 2018. doi: 10.1109/TAC.2018.2808039
|
| [30] |
H. Yu, T. Taleb, and J. Zhang, “Deterministic latency/jitter-aware service function chaining over beyond 5G edge fabric,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 2148–2162, Sep. 2022. doi: 10.1109/TNSM.2022.3151431
|
| [31] |
S. Sharifi and S. Shahbazpanahi, “A POMDP-based approach to joint antenna selection and user scheduling for multi-user massive MIMO communication,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1691–1706, Mar. 2023. doi: 10.1109/TCOMM.2022.3227304
|
| [32] |
W. Gao, Z. Yu, L. Wang, H. Cui, B. Guo, and H. Xiong, “Hierarchical deep reinforcement learning for computation offloading in autonomous multi-robot systems,” IEEE Robot. Autom. Lett., vol. 10, no. 1, pp. 540–547, Jan. 2025. doi: 10.1109/LRA.2024.3511408
|
| [33] |
S. Han, L. Jin, X. Xu, X. Tao, and P. Zhang, “R3C: Reliability and control cost co-aware in RIS-assisted wireless control systems for IIoT,” IEEE Internet Things J., vol. 11, no. 8, pp. 13692–13707, Apr. 2024. doi: 10.1109/JIOT.2023.3338618
|
| [34] |
Y. Zou, Y. Liu, X. Mu, X. Zhang, Y. Liu, and C. Yuen, “Machine learning in RIS-assisted NOMA IoT networks,” IEEE Internet Things J., vol. 10, no. 22, pp. 19427–19440, Nov. 2023. doi: 10.1109/JIOT.2023.3245288
|
| [35] |
C.-K. Zhang, Y. He, L. Jiang, M. Wu, and H.-B. Zeng, “Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2582–2588, May 2017. doi: 10.1109/TAC.2016.2600024
|