| Citation: | Y. Wang, T. Zhao, M. Cui, J. Gao, L. Liang, and J. Guo, “Representation then augmentation: Wide graph clustering network with multi-order filter fusion and double-level contrastive learning,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 1–15, Feb. 2026. doi: 10.1109/JAS.2025.125564 |
| [1] |
G. Fortino, F. Messina, D. Rosaci, and G. M. Sarnè, “ResIoT: An IoT social framework resilient to malicious activities,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1263–1278, 2020. doi: 10.1109/JAS.2020.1003330
|
| [2] |
Y. Tian, Y. Feng, X. Zhang, and C. Sun, “A fast clustering based evolutionary algorithm for super-large-scale sparse multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1048–1063, 2022.
|
| [3] |
Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, S. Y. Philip, and L. He, “Deep clustering: A comprehensive survey,” IEEE Trans. Neural Networks and Learning Systems, 2024, doi: 10.1109/TNNLS.2024.3403155.
|
| [4] |
Y. Qin, H. Wu, J. Zhao, and G. Feng, “Enforced block diagonal subspace clustering with closed form solution,” Pattern Recognition, vol. 130, p. 108791, 2022. doi: 10.1016/j.patcog.2022.108791
|
| [5] |
Y. Yang, Y. Sun, S. Wang, J. Guo, J. Gao, F. Ju, and B. Yin, “Graph neural networks with soft association between topology and attribute,” in Proc. AAAI, 2024, pp. 9260–9268.
|
| [6] |
Z. Chen, Z. Wu, S. Wang, and W. Guo, “Dual low-rank graph autoencoder for semantic and topological networks,” in Proc. AAAI, 2023, pp. 4191–4198.
|
| [7] |
Z. Chen, Z. Wu, Z. Lin, S. Wang, C. Plant, and W. Guo, “AGNN: Alternating graph-regularized neural networks to alleviate over-smoothing,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 10, pp. 13764–13776, 2024. doi: 10.1109/TNNLS.2023.3271623
|
| [8] |
G. Wan, Y. Tian, W. Huang, N. V. Chawla, and M. Ye, “S3GCL: Spectral, swift, spatial graph contrastive learning,” in Proc. ICML, 2024.
|
| [9] |
G. Wan, W. Huang, and M. Ye, “Federated graph learning under domain shift with generalizable prototypes,” in Proc. AAAI, 2024, pp. 15429–15437.
|
| [10] |
J. Zhao, J. Guo, Y. Sun, J. Gao, S. Wang, and B. Yin, “Adaptive graph convolutional clustering network with optimal probabilistic graph,” Neural Networks, vol. 156, pp. 271–284, 2022. doi: 10.1016/j.neunet.2022.09.017
|
| [11] |
X. Wu, Z. Ren, and F. R. Yu, “Parameter-free shifted laplacian reconstruction for multiple kernel clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1072–1074, 2023.
|
| [12] |
S. Wang, X. Lin, Z. Fang, S. Du, and G. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, 2022. doi: 10.1109/JAS.2022.105959
|
| [13] |
K. Liang, L. Meng, M. Liu, Y. Liu, W. Tu, S. Wang, S. Zhou, X. Liu, F. Sun, and K. He, “A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 46, no. 12, pp. 9456–9478, 2024. doi: 10.1109/TPAMI.2024.3417451
|
| [14] |
Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 226–238, 2023. doi: 10.1109/JAS.2023.123033
|
| [15] |
T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. ICLR, 2017.
|
| [16] |
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021. doi: 10.1109/TNNLS.2020.2978386
|
| [17] |
X. Hong, T. Zhang, Z. Cui, and J. Yang, “Variational gridded graph convolution network for node classification,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1697–1708, 2021. doi: 10.1109/JAS.2021.1004201
|
| [18] |
S. Wang, J. Yang, J. Yao, Y. Bai, and W. Zhu, “An overview of advanced deep graph node clustering,” IEEE Trans. Comput. Social Systems, vol. 11, no. 1, pp. 1302–1314, 2024. doi: 10.1109/TCSS.2023.3242145
|
| [19] |
Y. Liu, J. Xia, S. Zhou, X. Yang, K. Liang, C. Fan, Y. Zhuang, S. Z. Li, X. Liu, and K. He, “A survey of deep graph clustering: Taxonomy, challenge, application, and open resource,” arXiv preprint arXiv: 2211.12875, 2022.
|
| [20] |
G. Du, L. Zhou, Z. Li, L. Wang, and K. Lü, “Neighbor-aware deep multi-view clustering via graph convolutional network,” Information Fusion, vol. 93, pp. 330–343, 2023. doi: 10.1016/j.inffus.2023.01.001
|
| [21] |
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” in Proc. ICLR, 2018.
|
| [22] |
C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed graph clustering: A deep attentional embedding approach,” in Proc. IJCAI, 2019, pp. 3670–3676.
|
| [23] |
D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep clustering network,” in Proc. WWW, 2020, pp. 1400–1410.
|
| [24] |
W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng, “Deep fusion clustering network,” in Proc. AAAI, 2021, pp. 9978–9987.
|
| [25] |
J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, “Multi-view attribute graph convolution networks for clustering,” in Proc. IJCAI, 2021, pp. 2973–2979.
|
| [26] |
Z. Chen, L. Fu, J. Yao, W. Guo, C. Plant, and S. Wang, “Learnable graph convolutional network and feature fusion for multi-view learning,” Information Fusion, vol. 95, pp. 109–119, 2023. doi: 10.1016/j.inffus.2023.02.013
|
| [27] |
S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially regularized graph autoencoder for graph embedding,” in Proc. IJCAI, 2018, pp. 2609–2615.
|
| [28] |
Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph embedding for ensemble clustering,” in Proc. IJCAI, 2019, pp. 3562–3568.
|
| [29] |
Y. Yang, F. Ju, Y. Sun, J. Gao, and B. Yin, “Adversarially regularized joint structured clustering network,” Information Sciences, vol. 615, pp. 136–151, 2022. doi: 10.1016/j.ins.2022.09.066
|
| [30] |
H. Zhao, X. Yang, Z. Wang, E. Yang, and C. Deng, “Graph debiased contrastive learning with joint representation clustering.” in Proc. IJCAI, 2021, pp. 3434–3440.
|
| [31] |
K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation learning on graphs,” in Proc. ICML, 2020, pp. 4116–4126.
|
| [32] |
W. Xia, Q. Wang, Q. Gao, M. Yang, and X. Gao, “Self-consistent contrastive attributed graph clustering with pseudo-label prompt,” IEEE Trans. Multimedia, vol. 25, pp. 6665–6677, 2022.
|
| [33] |
Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, and E. Zhu, “Deep graph clustering via dual correlation reduction,” in Proc. AAAI, 2022, pp. 7603–7611.
|
| [34] |
X. Yang, C. Tan, Y. Liu, K. Liang, S. Wang, S. Zhou, J. Xia, S. Z. Li, X. Liu, and E. Zhu, “Convert: Contrastive graph clustering with reliable augmentation,” in Proc. ACM MM, 2023, pp. 319–327.
|
| [35] |
X. Shen, D. Sun, S. Pan, X. Zhou, and L. T. Yang, “Neighbor contrastive learning on learnable graph augmentation,” in Proc. AAAI, 2023, pp. 9782–9791.
|
| [36] |
X. Yan, K. Deng, Q. Zou, Z. Tian, and H. Yu, “Self-cumulative contrastive graph clustering,” IEEE/CAA J. Autom. Sinica, 2025, doi: 10.1109/JAS.2024.125025.
|
| [37] |
T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in NIPS, 2016.
|
| [38] |
G. Huo, Y. Zhang, J. Gao, B. Wang, Y. Hu, and B. Yin, “CaEGCN: Cross-attention fusion based enhanced graph convolutional network for clustering,” IEEE Trans. Knowledge and Data Engineering, vol. 35, no. 4, pp. 3471–3483, 2023. doi: 10.1109/TKDE.2021.3125020
|
| [39] |
W. Xia, Q. Gao, M. Yang, and X. Gao, “Self-supervised contrastive attributed graph clustering,” arXiv preprint arXiv: 2110.08264, 2021.
|
| [40] |
X. Yang, E. Min, K. LIANG, Y. Liu, S. Wang, H. Wu, X. Liu, E. Zhu et al., “GraphLearner: Graph node clustering with fully learnable augmentation,” in Proc. ACM MM, 2024, pp. 5517–5526.
|
| [41] |
X. Yang, Y. Liu, S. Zhou, S. Wang, W. Tu, Q. Zheng, X. Liu, L. Fang, and E. Zhu, “Cluster-guided contrastive graph clustering network,” in Proc. AAAI, 2023, pp. 10834–10842.
|
| [42] |
Y. Liu, X. Yang, S. Zhou, X. Liu, S. Wang, K. Liang, W. Tu, and L. Li, “Simple contrastive graph clustering,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 10, pp. 13 789–13 800, 2024. doi: 10.1109/TNNLS.2023.3271871
|
| [43] |
W. Xia, S. Wang, M. Yang, Q. Gao, J. Han, and X. Gao, “Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation,” Neural Networks, vol. 145, pp. 1–9, 2022. doi: 10.1016/j.neunet.2021.10.006
|
| [44] |
G. Cui, J. Zhou, C. Yang, and Z. Liu, “Adaptive graph encoder for attributed graph embedding,” in Proc. SIGKDD, 2020, pp. 976–985.
|
| [45] |
W. Jin, X. Liu, X. Zhao, Y. Ma, N. Shah, and J. Tang, “Automated self-supervised learning for graphs,” arXiv preprint arXiv: 2106.05470, 2021.
|
| [46] |
N. Lee, J. Lee, and C. Park, “Augmentation-free self-supervised learning on graphs,” in Proc. AAAI, 2022, pp. 7372–7380.
|
| [47] |
L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.
|