A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 19.2, Top 1 (SCI Q1)
    CiteScore: 28.2, Top 1% (Q1)
    Google Scholar h5-index: 95, TOP 5
Turn off MathJax
Article Contents
L. Lin and X. Luo, “Dual channel graph convolutional networks via personalized pagerank,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125492
Citation: L. Lin and X. Luo, “Dual channel graph convolutional networks via personalized pagerank,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125492

Dual Channel Graph Convolutional Networks via Personalized PageRank

doi: 10.1109/JAS.2025.125492
More Information
  • loading
  • [1]
    K. Ding, Z. Xu, H. Tong, H. Liu. “Data augmentation for deep graph learning: A survey”. ACM SIGKDD Explorations Newsletter, 24(2), 61−77. 2022.
    [2]
    K. Ding, C. Zhang, J. Tang, N. Chawla, H. Liu. “Toward graph minimally-supervised learning”. KDD, 2022.
    [3]
    D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, X. Zhang. “Learning to drop: Robust graph neural network via topological denoising”. WSDM, 2021.
    [4]
    C. Zhuang, Q. Ma. “Dual graph convolutional networks for graph-based semi-supervised classification”. WWW, 2018.
    [5]
    M. Azabou, V. Ganesh, S. Thakoor, C. Lin, L. Sathidevi, R. Liu, M. Valko, P. Velickovic, E. Dyer. “Half-Hop: A graph upsampling approach for slowing down message passing”. ICML, 2023.
    [6]
    F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger. “Simplifying graph convolutional networks”. ICML, 2019
    [7]
    C. Deng, Z. Zhao, Y. Wang, Z. Zhang, Z. Feng. “Graphzoom: A multi-level spectral approach for accurate and scalable graph embedding”. ICLR, 2020.
    [8]
    X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, J. Pei. “Am-gcn: Adaptive multi-channel graph convolutional networks”. KDD, 2021.
    [9]
    W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, J. Tang. “Node similarity preserving graph convolutional networks”. WSDM, 2021.
    [10]
    R. Andersen, F. Chung, K. Lang. “Local graph partitioning using pagerank vectors”. FOCS, 2006.
    [11]
    L. Lin, R. Li, T. Jia. “Scalable and effective conductance-based graph clustering”. AAAI, 2023.
    [12]
    Y. Yu, L. Lin, Q. Liu, Z. Wang, X. Ou, T. Jia. “GSD-GNN: generalizable and scalable algorithms for decoupled graph neural networks”. ICMR, 2024.
    [13]
    T. N. Kipf, M. Welling. “Semi-supervised classification with graph convolutional networks”. ICLR, 2017.
    [14]
    W. Hamilton, Z. Ying, J. Leskovec. “Inductive representation learning on large graphs”. NIPS, 2017.
    [15]
    P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio. “Graph attention networks”. ICLR, 2018.
    [16]
    W. Zhang, M. Yang, Z. Sheng, Y. Li, W. Ouyang, Y. Tao, B. Cui. “Node dependent local smoothing for scalable graph learning”. NIPS, 2021.
    [17]
    K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka. “Representation learning on graphs with jumping knowledge networks”. ICML, 2018.
    [18]
    J. Gasteiger, A. Bojchevski, S. Günnemann. “Predict then propagate: Graph neural networks meet personalized pagerank”. ICLR, 2019.
    [19]
    M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, J. Wen. “Scalable graph neural networks via bidirectional propagation”. NIPS, 2021
    [20]
    K. Ding, Y. Wang, Y. Yang, and H. Liu. “Eliciting structural and semantic global knowledge in unsupervised graph contrastive learning”. AAAI, 2023,
    [21]
    G. Xue, M. Zhong, T. Qian, and J. Li. 2024. “PSA-GNN: an augmented GNN framework with priori subgraph knowledge”. Neural Networks 173, 106155, 2024.
    [22]
    W. Zhao, Q. Wu, C. Yang, and J. Yan. “GeoMix: towards geometry-aware data augmentation”. KDD, 2024
    [23]
    Z. Liao, T. Liu, Y. He, L. Lin. “Effective temporal graph learning via personalized pageRank”. Entropy, 26(7), 2024.
    [24]
    L. Lin, Y. Yu, Z. Wang, Z. Wang, Y. Zhao, J. Zhao, T. Jia. “PSNE: Efficient spectral sparsification algorithms for scaling network embedding”, CIKM, 2024
    [25]
    F. Bi, X. Luo, B. Shen, H. Dong, Z. Wang, “Proximal Alternating-Direction-Method-of-Multipliers-Incorporated Nonnegative Latent Factor Analysis”, IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1388−1406, 2023.
    [26]
    J. Chen, Y. Yuan, X. Luo. Sdgnn: Symmetry-preserving dual-stream graph neural networks. IEEE/CAA J. Autom. Automatica Sinica, vol. 11, no 7, pp, 1717−1719, 2024

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (42) PDF downloads(8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return