A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Liu, Y. Huang, and C. Deng, “Accelerated distributed cooperative energy management for integrated energy systems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125489
Citation: L. Liu, Y. Huang, and C. Deng, “Accelerated distributed cooperative energy management for integrated energy systems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125489

Accelerated Distributed Cooperative Energy Management for Integrated Energy Systems

doi: 10.1109/JAS.2025.125489
Funds:  This work was supported in part by the National Natural Science Foundation of China (U24B20184, 62373118), and in part by the National Key Research and Development Program of China (2023YFB3906403)
More Information
  • This paper is concerned with the problem of distributed coordination energy management of integrated energy systems (IESs). First, an energy management model for IESs is established and formulated as a distributed constrained optimization problem. Then, an accelerated distributed event-triggered algorithm is developed to solve the problem. Compared with the existing algorithms, the developed algorithm simultaneously offers two advantages. On the one hand, the convergence speed of the algorithm is improved greatly by incorporating the second-order information. On the other hand, the algorithm is implemented with asynchronous communication by an event-triggered mechanism, effectively reducing communication interact. Furthermore, the convergence and optimality of the algorithm are analyzed rigorously based on Lyapunov method. Finally, simulation studies are provided to validate the effectiveness of the algorithm.

     

  • loading
  • [1]
    D. Yue and Q. -L. Han, “Guest editorial special issue on new trends in energy internet: artificial intelligence-based control, network security, and management,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1551–1553, Aug. 2019. doi: 10.1109/TSMC.2019.2923034
    [2]
    B. Huang, Y. Li, H. Zhang, and Q. Sun, “Distributed optimal co-multi-microgrids energy management for energy internet,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016. doi: 10.1109/JAS.2016.7510073
    [3]
    W. Chen and G. -P. Liu, “Privacy-preserving consensus-based distributed economic dispatch of smart grids via state decomposition,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1250–1261, May 2024. doi: 10.1109/JAS.2023.124122
    [4]
    W. Lin, Y. Wang, C. Li, and X. Yu, “Distributed resource allocation via accelerated saddle point dynamics,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1588–1599, Sept. 2021. doi: 10.1109/JAS.2021.1004114
    [5]
    Y. Guo, W. Xu, H. Wang, J. Lu, and S. Du, “Privacy-preserving average consensus algorithm under round-robin scheduling protocol,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1705–1707, Jul. 2024. doi: 10.1109/JAS.2023.123921
    [6]
    L. An, G. Yang, “Collisions-free distributed cooperative output regulation of nonlinear multi-agent systems,” IEEE Trans. Autom. Control, vol. 69, no. 11, pp. 8072–8079, Nov. 2024. doi: 10.1109/TAC.2024.3409210
    [7]
    S. Fan, Y. Fu, Y. Liu, and C. Deng, “Round-robin-based cooperative resilient control for AC/DC MG under FDI attacks”, IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2024.3522484, 2024.
    [8]
    S. Yang, S. Tan, and J.-X. Xu, “Consensus based approach for economic dispatch problem in a smart grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4416–4426, Nov. 2013. doi: 10.1109/TPWRS.2013.2271640
    [9]
    Y. Xu and Z. Li, “Distributed optimal resource management based on the consensus algorithm in a microgrid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2584–2592, Apr. 2015. doi: 10.1109/TIE.2014.2356171
    [10]
    H. Li, H. Hui, and H. Zhang, “Consensus-based energy management of microgrid with random packet drops,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3600–3613, Sept. 2023. doi: 10.1109/TSG.2023.3241653
    [11]
    J. Duan and M. -Y. Chow, “A resilient consensus-based distributed energy management algorithm against data integrity attacks,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4729–4740, Sept. 2019. doi: 10.1109/TSG.2018.2867106
    [12]
    L. Liu and G. Yang, “Distributed optimal economic environmental dispatch for microgrids over time-varying directed communication graph,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1913–1924, Apr.-Jun. 2021. doi: 10.1109/TNSE.2021.3076526
    [13]
    F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed economic dispatch for smart grids with random wind power,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1572–1583, May 2016. doi: 10.1109/TSG.2015.2434831
    [14]
    B. Huang, L. Liu, H. Zhang, Y. Li, and Q. Sun, “Distributed optimal economic dispatch for microgrids considering communication delays,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 49, no. 8, pp. 1634–1642, Aug. 2019. doi: 10.1109/TSMC.2019.2900722
    [15]
    Y. Li, et al, “Distributed hybrid-triggering-based secure dispatch approach for smart grid against dos attacks,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 53, no. 6, pp. 3574–3587, Jun. 2023. doi: 10.1109/TSMC.2022.3228780
    [16]
    L. Ding, L. Wang, G. Yin, W. Zheng, and Q.-L. Han, “Distributed energy management for smart grids with an event-triggered communication scheme,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 1950–1961, Sep. 2019. doi: 10.1109/TCST.2018.2842208
    [17]
    W. Fu, Y. Wan, J. Qin, Y. Kang, and L. Li, “Privacy-preserving optimal energy management for smart grid with cloud-edge computing,” IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4029–4038, Jun. 2022. doi: 10.1109/TII.2021.3114513
    [18]
    C. Deng, F. Guo, C. Wen, D. Yue, and Y. Wang, “Distributed resilient secondary control for DC microgrids against heterogeneous communication delays and DoS attacks,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11560–11568, Nov. 2022. doi: 10.1109/TIE.2021.3120492
    [19]
    L. Ding, Q. -L. Han, and X. -M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3910–3922, Jul. 2019. doi: 10.1109/TII.2018.2884494
    [20]
    H. Zhang, Y. Li, D. W. Gao, and J. Zhou, “Distributed optimal energy management for energy internet,” IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 3081–3097, Dec. 2017. doi: 10.1109/TII.2017.2714199
    [21]
    X. Le, S. Chen, F. Li, Z. Yan, and J. Xi, “Distributed neurodynamic optimization for energy internet management,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 49, no. 8, pp. 1624–1633, Aug. 2019. doi: 10.1109/TSMC.2019.2898551
    [22]
    Y. Xu, J. Hu, M. Chow, and H. Sun, “Distributed, neurodynamic-based approach for economic dispatch in an integrated energy system,” IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2245–2257, Apr. 2020. doi: 10.1109/TII.2019.2905156
    [23]
    Q. Sun, R. Fan, Y. Li, B. Huang, and D. Ma, “A distributed double-consensus algorithm for residential we-energy,” IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4830–4842, Aug. 2019.
    [24]
    B. Huang, Y. Li, F. Zhan, Q. Sun, and H. Zhang, “A distributed robust economic dispatch strategy for integrated energy system considering cyber-attacks,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 880–890, Feb. 2022. doi: 10.1109/TII.2021.3077509
    [25]
    Y. Li, J. Wang, R. Wang, D. W. Gao, Q. Sun, and H. Zhang, “A switched Newton-Raphson-based distributed energy management algorithm for multienergy system under persistent DoS attacks,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2985–2997, Oct. 2022. doi: 10.1109/TASE.2021.3104393
    [26]
    H. Dai, J. Jia, L. Yan, X. Fang, and W. Chen, “Distributed fixed-time optimization in economic dispatch over directed networks,” IEEE Trans. Ind. Informat., vol. 17, no. 5, pp. 3011–3019, May 2021. doi: 10.1109/TII.2020.3010282
    [27]
    L. Liu and G. Yang, “Distributed fixed-time optimal resource management for microgrids,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 1, pp. 404–412, Jan. 2023. doi: 10.1109/TASE.2022.3155163
    [28]
    Z. Guo and G. Chen, “Predefined-time distributed optimal allocation of resources: A time-base generator scheme,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 52, no. 1, pp. 438–447, Jan. 2022. doi: 10.1109/TSMC.2020.2997697
    [29]
    Y. Zhang, Y. Wang, J. Xiao, X. Liu, “Distributed predefined-time optimal economic dispatch for microgrids,” Automatica, vol. 169, no. 111870, 2024.
    [30]
    Q. Lu, X. Liao, H. Li, and T. Huang, “Achieving acceleration for distributed economic dispatch in smart grids over directed networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1988–1999, Jul.-Sept. 2020. doi: 10.1109/TNSE.2020.2965999
    [31]
    F. Guo, G. Li, C. Wen, L. Wang, and Z. Meng, “An accelerated distributed gradient-based algorithm for constrained optimization with application to economic dispatch in a large-scale power system,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 51, no. 4, pp. 2041–2053, Apr. 2021. doi: 10.1109/TSMC.2019.2936829
    [32]
    W. Lu, M. Liu, S. Lin, and L. Li, “Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6320–6331, Nov. 2019. doi: 10.1109/TSG.2019.2902255
    [33]
    C. Wu, W. Gu, P. Jiang, Z. Li, H. Cai, and B. Li, “Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 118–127, Jan. 2018. doi: 10.1109/TSTE.2017.2718031
    [34]
    P. Yi, Y. Hong, and F. Liu, “Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems,” Automatica, vol. 74, pp. 259–269, Dec. 2016. doi: 10.1016/j.automatica.2016.08.007
    [35]
    G. Chen, J. Ren, and E. Feng, “Distributed finite-time economic dispatch of a network of energy resources,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 822–832, Mar. 2017.
    [36]
    X. He, D. Ho, T. Huang, J. Yu, H. Abu-Rub, and C. Li, “Second-order continuous-time algorithms for economic power dispatch in smart grids,” IEEE Trans. Syst. Man, Cybern., Syst., vol. 48, no. 9, pp. 1482–1492, Sep. 2018. doi: 10.1109/TSMC.2017.2672205

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (50) PDF downloads(15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return