Citation: | L. Liu, Y. Huang, and C. Deng, “Accelerated distributed cooperative energy management for integrated energy systems,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125489 |
[1] |
D. Yue and Q. -L. Han, “Guest editorial special issue on new trends in energy internet: artificial intelligence-based control, network security, and management,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1551–1553, Aug. 2019. doi: 10.1109/TSMC.2019.2923034
|
[2] |
B. Huang, Y. Li, H. Zhang, and Q. Sun, “Distributed optimal co-multi-microgrids energy management for energy internet,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016. doi: 10.1109/JAS.2016.7510073
|
[3] |
W. Chen and G. -P. Liu, “Privacy-preserving consensus-based distributed economic dispatch of smart grids via state decomposition,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1250–1261, May 2024. doi: 10.1109/JAS.2023.124122
|
[4] |
W. Lin, Y. Wang, C. Li, and X. Yu, “Distributed resource allocation via accelerated saddle point dynamics,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1588–1599, Sept. 2021. doi: 10.1109/JAS.2021.1004114
|
[5] |
Y. Guo, W. Xu, H. Wang, J. Lu, and S. Du, “Privacy-preserving average consensus algorithm under round-robin scheduling protocol,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1705–1707, Jul. 2024. doi: 10.1109/JAS.2023.123921
|
[6] |
L. An, G. Yang, “Collisions-free distributed cooperative output regulation of nonlinear multi-agent systems,” IEEE Trans. Autom. Control, vol. 69, no. 11, pp. 8072–8079, Nov. 2024. doi: 10.1109/TAC.2024.3409210
|
[7] |
S. Fan, Y. Fu, Y. Liu, and C. Deng, “Round-robin-based cooperative resilient control for AC/DC MG under FDI attacks”, IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2024.3522484, 2024.
|
[8] |
S. Yang, S. Tan, and J.-X. Xu, “Consensus based approach for economic dispatch problem in a smart grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4416–4426, Nov. 2013. doi: 10.1109/TPWRS.2013.2271640
|
[9] |
Y. Xu and Z. Li, “Distributed optimal resource management based on the consensus algorithm in a microgrid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2584–2592, Apr. 2015. doi: 10.1109/TIE.2014.2356171
|
[10] |
H. Li, H. Hui, and H. Zhang, “Consensus-based energy management of microgrid with random packet drops,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3600–3613, Sept. 2023. doi: 10.1109/TSG.2023.3241653
|
[11] |
J. Duan and M. -Y. Chow, “A resilient consensus-based distributed energy management algorithm against data integrity attacks,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4729–4740, Sept. 2019. doi: 10.1109/TSG.2018.2867106
|
[12] |
L. Liu and G. Yang, “Distributed optimal economic environmental dispatch for microgrids over time-varying directed communication graph,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1913–1924, Apr.-Jun. 2021. doi: 10.1109/TNSE.2021.3076526
|
[13] |
F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed economic dispatch for smart grids with random wind power,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1572–1583, May 2016. doi: 10.1109/TSG.2015.2434831
|
[14] |
B. Huang, L. Liu, H. Zhang, Y. Li, and Q. Sun, “Distributed optimal economic dispatch for microgrids considering communication delays,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 49, no. 8, pp. 1634–1642, Aug. 2019. doi: 10.1109/TSMC.2019.2900722
|
[15] |
Y. Li, et al, “Distributed hybrid-triggering-based secure dispatch approach for smart grid against dos attacks,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 53, no. 6, pp. 3574–3587, Jun. 2023. doi: 10.1109/TSMC.2022.3228780
|
[16] |
L. Ding, L. Wang, G. Yin, W. Zheng, and Q.-L. Han, “Distributed energy management for smart grids with an event-triggered communication scheme,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 1950–1961, Sep. 2019. doi: 10.1109/TCST.2018.2842208
|
[17] |
W. Fu, Y. Wan, J. Qin, Y. Kang, and L. Li, “Privacy-preserving optimal energy management for smart grid with cloud-edge computing,” IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4029–4038, Jun. 2022. doi: 10.1109/TII.2021.3114513
|
[18] |
C. Deng, F. Guo, C. Wen, D. Yue, and Y. Wang, “Distributed resilient secondary control for DC microgrids against heterogeneous communication delays and DoS attacks,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11560–11568, Nov. 2022. doi: 10.1109/TIE.2021.3120492
|
[19] |
L. Ding, Q. -L. Han, and X. -M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3910–3922, Jul. 2019. doi: 10.1109/TII.2018.2884494
|
[20] |
H. Zhang, Y. Li, D. W. Gao, and J. Zhou, “Distributed optimal energy management for energy internet,” IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 3081–3097, Dec. 2017. doi: 10.1109/TII.2017.2714199
|
[21] |
X. Le, S. Chen, F. Li, Z. Yan, and J. Xi, “Distributed neurodynamic optimization for energy internet management,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 49, no. 8, pp. 1624–1633, Aug. 2019. doi: 10.1109/TSMC.2019.2898551
|
[22] |
Y. Xu, J. Hu, M. Chow, and H. Sun, “Distributed, neurodynamic-based approach for economic dispatch in an integrated energy system,” IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2245–2257, Apr. 2020. doi: 10.1109/TII.2019.2905156
|
[23] |
Q. Sun, R. Fan, Y. Li, B. Huang, and D. Ma, “A distributed double-consensus algorithm for residential we-energy,” IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4830–4842, Aug. 2019.
|
[24] |
B. Huang, Y. Li, F. Zhan, Q. Sun, and H. Zhang, “A distributed robust economic dispatch strategy for integrated energy system considering cyber-attacks,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 880–890, Feb. 2022. doi: 10.1109/TII.2021.3077509
|
[25] |
Y. Li, J. Wang, R. Wang, D. W. Gao, Q. Sun, and H. Zhang, “A switched Newton-Raphson-based distributed energy management algorithm for multienergy system under persistent DoS attacks,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2985–2997, Oct. 2022. doi: 10.1109/TASE.2021.3104393
|
[26] |
H. Dai, J. Jia, L. Yan, X. Fang, and W. Chen, “Distributed fixed-time optimization in economic dispatch over directed networks,” IEEE Trans. Ind. Informat., vol. 17, no. 5, pp. 3011–3019, May 2021. doi: 10.1109/TII.2020.3010282
|
[27] |
L. Liu and G. Yang, “Distributed fixed-time optimal resource management for microgrids,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 1, pp. 404–412, Jan. 2023. doi: 10.1109/TASE.2022.3155163
|
[28] |
Z. Guo and G. Chen, “Predefined-time distributed optimal allocation of resources: A time-base generator scheme,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 52, no. 1, pp. 438–447, Jan. 2022. doi: 10.1109/TSMC.2020.2997697
|
[29] |
Y. Zhang, Y. Wang, J. Xiao, X. Liu, “Distributed predefined-time optimal economic dispatch for microgrids,” Automatica, vol. 169, no. 111870, 2024.
|
[30] |
Q. Lu, X. Liao, H. Li, and T. Huang, “Achieving acceleration for distributed economic dispatch in smart grids over directed networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1988–1999, Jul.-Sept. 2020. doi: 10.1109/TNSE.2020.2965999
|
[31] |
F. Guo, G. Li, C. Wen, L. Wang, and Z. Meng, “An accelerated distributed gradient-based algorithm for constrained optimization with application to economic dispatch in a large-scale power system,” IEEE Trans. Syst., Man, and Cyber., Syst., vol. 51, no. 4, pp. 2041–2053, Apr. 2021. doi: 10.1109/TSMC.2019.2936829
|
[32] |
W. Lu, M. Liu, S. Lin, and L. Li, “Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6320–6331, Nov. 2019. doi: 10.1109/TSG.2019.2902255
|
[33] |
C. Wu, W. Gu, P. Jiang, Z. Li, H. Cai, and B. Li, “Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 118–127, Jan. 2018. doi: 10.1109/TSTE.2017.2718031
|
[34] |
P. Yi, Y. Hong, and F. Liu, “Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems,” Automatica, vol. 74, pp. 259–269, Dec. 2016. doi: 10.1016/j.automatica.2016.08.007
|
[35] |
G. Chen, J. Ren, and E. Feng, “Distributed finite-time economic dispatch of a network of energy resources,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 822–832, Mar. 2017.
|
[36] |
X. He, D. Ho, T. Huang, J. Yu, H. Abu-Rub, and C. Li, “Second-order continuous-time algorithms for economic power dispatch in smart grids,” IEEE Trans. Syst. Man, Cybern., Syst., vol. 48, no. 9, pp. 1482–1492, Sep. 2018. doi: 10.1109/TSMC.2017.2672205
|