Citation: | Z. Feng, Z. Shi, X. Dong, G. Hu, and J. Lv, “Attack-resilient distributed Nash equilibrium seeking for networked games under unbounded FDI attacks: Theory and experiment,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125486 |
[1] |
X. Na and D. Cole, “Theoretical and experimental investigation of driver noncooperative-game steering control behavior,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 189–205, 2021. doi: 10.1109/JAS.2020.1003480
|
[2] |
M. S. Stankovic, K. H. Johansson, and D. M. Stipanovic, “Distributed seeking of Nash equilibria with applications to mobile sensor networks,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 904–919, 2012. doi: 10.1109/TAC.2011.2174678
|
[3] |
C. Mu, K. Wang, Z. Ni, and C. Sun, “Cooperative differential game-based optimal control and its application to power systems,” IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5169–5179, 2020. doi: 10.1109/TII.2019.2955966
|
[4] |
M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023. doi: 10.1109/JAS.2022.105428
|
[5] |
D. Gadjov and L. Pavel, “A passivity-based approach to Nash equilibrium seeking over networks,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 1077–1092, 2019.
|
[6] |
Z. Deng and X. Nian, “Distributed generalized Nash equilibrium seeking algorithm design for aggregative games over weight-balanced digraphs,” IEEE Trans. Neur. Net. Lear., vol. 30, no. 3, pp. 695–706, 2019. doi: 10.1109/TNNLS.2018.2850763
|
[7] |
M. Ye, “Distributed robust seeking of Nash equilibrium for networked games: An extended state observer-based approach,” IEEE Trans. Cybern., vol. 52, no. 3, pp. 1527–1538, 2022. doi: 10.1109/TCYB.2020.2989755
|
[8] |
C. D. Persis and S. Grammatico, “Distributed averaging integral Nash equilibrium seeking on networks,” Automatica, vol. 110, p. 108548, 2019. doi: 10.1016/j.automatica.2019.108548
|
[9] |
M. Ye and G. Hu, “Adaptive approaches for fully distributed Nash equilibrium seeking in networked games,” Automatica, vol. 129, p. 109661, 2021. doi: 10.1016/j.automatica.2021.109661
|
[10] |
Z. Feng, G. Hu, X. Dong, and J. Lv, “Adaptively distributed Nash equilibrium seeking of noncooperative games for uncertain heterogeneous linear multi-agent systems,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 6, pp. 3871–3882, 2023.
|
[11] |
N. Ding, C. Chen, M. Ye, and Q. Han, “Fully distributed Nash equilibrium seeking: A double-layer adaptive approach,” IEEE Trans. on Neural Netw. Learn. Syst., Doi: 10.1109/TNNLS.2024.3489356, 2024.
|
[12] |
Z. Feng and G. Hu, “Secure cooperative event-triggered control of linear multi-agent systems under DoS attacks,” IEEE Trans. Contr. Syst. Tech., vol. 28, no. 3, pp. 741–752, 2020. doi: 10.1109/TCST.2019.2892032
|
[13] |
X. Ge, Q. Han, Q. Wu, and X. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, 2023. doi: 10.1109/JAS.2022.105845
|
[14] |
X. Li, C. Wen, and C. Chen, “Resilient cooperative control for networked Lagrangian systems against DoS attacks,” IEEE Trans. Cybernetics, vol. 52, no. 2, pp. 836–848, 2022. doi: 10.1109/TCYB.2020.2988883
|
[15] |
B. Chen, Y. Tan, Z. Sun, and L. Yu, “Attack-resilient control against FDI attacks in cyber-physical systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1099–1102, 2022. doi: 10.1109/JAS.2022.105641
|
[16] |
C. Wu, W. Pan, R. Staa, J. Liu, G. Sun, and L. Wu, “Deep reinforcement learning control approach to mitigating actuator attacks,” Automatica, vol. 152, no. 110999, pp. 1–12, 2023.
|
[17] |
D. Zhao, Y. Lv, X. Yu, G. Wen, and G. Chen, “Resilient consensus of higher order multi-agent networks: An attack isolation-based approach,” IEEE Trans. Autom. Control, vol. 67, no. 2, pp. 1001–1007, 2022. doi: 10.1109/TAC.2021.3075327
|
[18] |
S. Sundaram and B. Gharesifard, “Distributed optimization under adversarial nodes,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1063–1076, 2019. doi: 10.1109/TAC.2018.2836919
|
[19] |
C. Zhao, J. He, and Q. Wang, “Resilient distributed optimization algorithm against adversarial attacks,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4308–4315, 2020. doi: 10.1109/TAC.2019.2954363
|
[20] |
Z. Feng and G. Hu, “Attack-resilient distributed convex optimization of cyber–physical systems against malicious cyber-attacks over random digraphs,” IEEE Internet Things J., vol. 10, no. 1, pp. 458–472, 2023. doi: 10.1109/JIOT.2022.3201583
|
[21] |
C. Deng, L. Xu, T. Yang, Y. Dong, and T. Chai, “Distributed cooperative optimization for nonlinear heterogeneous MASs under intermittent communication,” IEEE Trans. Autom. Control, vol. 69, no. 4, pp. 2737–2744, 2024. doi: 10.1109/TAC.2023.3339435
|
[22] |
X. Wang, X. Sun, A. Teel, and K. Liu, “Distributed robust Nash equilibrium seeking for aggregative games under persistent attacks: A hybrid systems approach,” Automatica, vol. 122, p. 109255, 2021.
|
[23] |
C. Qian and L. Ding, “Fully distributed attack-resilient Nash equilibrium seeking for networked games subject to DoS attacks,” Infor. Sciences, vol. 641, p. 119080, 2023. doi: 10.1016/j.ins.2023.119080
|
[24] |
M. Ye, “On resilience against cyber-physical uncertainties in distributed Nash equilibrium seeking strategies for heterogeneous games,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 138–147, 2025. doi: 10.1109/JAS.2024.124803
|
[25] |
C. Xin, X. Feng, and W. Bo, “Resilient Nash equilibrium seeking in multi-agent games under false data injection attacks,” IEEE Trans. Syst., Man Cybern. Syst., vol. 53, no. 1, pp. 275–283, 2023. doi: 10.1109/TSMC.2022.3180006
|
[26] |
Z. Li, W. Ren, X. Liu, and M. Fu, “Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1786–1791, 2013. doi: 10.1109/TAC.2012.2235715
|
[27] |
G. Hu, “Robust consensus tracking of a class of second-order multi-agent dynamic systems,” Syst. Control Lett., vol. 61, no. 1, pp. 134–142, 2012. doi: 10.1016/j.sysconle.2011.10.004
|
[28] |
Z. Feng and G. Hu, “Connectivity-preserving flocking for networked Lagrange systems with time-varying actuator faults,” Automatica, vol. 109, no. 108509, pp. 1–10, 2019.
|
[29] |
X. Li, C. Wen, J. Wang, and J. Zhou, “Adaptive coordination of networked Lagrangian systems with nonsmooth actuator nonlinearities,” IEEE Trans. Autom. Control, vol. 70, no. 3, pp. 1883–1889, 2025. doi: 10.1109/TAC.2024.3471860
|
[30] |
N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle-Yoshizawa corollaries for nonsmooth systems,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 2333–2338, 2013.
|
[31] |
F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, 2007.
|