A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
P. Ye, X. Xue, Q. Ni, J. Yang, and F.-Y. Wang, “Parallel experiments: From human participated to a virtual-real hybrid paradigm,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1–5, Aug. 2025. doi: 10.1109/JAS.2025.125474
Citation: P. Ye, X. Xue, Q. Ni, J. Yang, and F.-Y. Wang, “Parallel experiments: From human participated to a virtual-real hybrid paradigm,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1–5, Aug. 2025. doi: 10.1109/JAS.2025.125474

Parallel Experiments: From Human Participated to A Virtual-Real Hybrid Paradigm

doi: 10.1109/JAS.2025.125474
Funds:  This work was supported in part by the National Natural Science Foundation of China (T2192933, 62476270)
More Information
  • loading
  • [1]
    X. Xue, X.-N. Yu, D.-Y. Zhou, C. Peng, X. Wang, Z.-B. Zhou, and F.-Y. Wang, “Computational experiments: Past, present and perspective,” Acta Automatica Sinica, vol. 49, no. 2, pp. 246–271, 2023.
    [2]
    F.-Y. Wang and Y. Shen, “Parallel light fields: A perspective and a framework,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 542–544, 2024. doi: 10.1109/JAS.2023.123174
    [3]
    X. Xue, D. Zhou, X. Yu, G. Wang, J. Li, X. Xie, L. Cui, and F.-Y. Wang, “Computational experiments for complex social systems: Experiment design and generative explanation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1022–1038, 2024. doi: 10.1109/JAS.2024.124221
    [4]
    X. Xue, X. Yu, D. Zhou, X. Wang, C. Bi, S. Wang, and F.-Y. Wang, “Computational experiments for complex social systems: Integrated design of experiment system,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1175–1189, 2024. doi: 10.1109/JAS.2023.123639
    [5]
    D. Xiong, D. Zhang, Y. Chu, Y. Zhao, and X. Zhao, “Intuitive humanrobot-environment interaction with emg signals: A review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1075–1091, 2024. doi: 10.1109/JAS.2024.124329
    [6]
    P. Ye, B. Song, J. Yang, and G. Xiong, “Dynamic driving style recognition for human machine shared control,” IEEE Trans. Intelligent Vehicles, 2024.
    [7]
    T. Wang, P. Ye, H. Lv, W. Gong, H. Lu, and F.-Y. Wang, “Modeling digital personality: A fuzzy-logic-based myers-briggs type indicator for fine-grained analytics of digital human,” IEEE Trans. Computational Social Systems, vol. 11, no. 1, pp. 1096–1107, 2024. doi: 10.1109/TCSS.2023.3245127
    [8]
    M. Kang, J.-Y. Zhu, R. Zhang, J. Park, E. Shechtman, S. Paris, and T. Park, “Scaling up gans for text-to-image synthesis,” in Proc. IEEE/CVF Computer Vision and Pattern Recognition Conf., Vancouver, Canada, Jun. 2023.
    [9]
    W. J. Yun, M. Shin, S. Jung, S. Kwon, and J. Kim, “Parallelized and randomized adversarial imitation learning for safety-critical self-driving vehicles,” Journal of Communications and Networks, vol. 24, no. 6, pp. 710–721, 2022. doi: 10.23919/JCN.2022.000012
    [10]
    Z. Yue, P. Zhou, R. Hong, H. Zhang, and Q. Sun, “Few-shot learner parameterization by diffusion time-steps,” in Proc. IEEE/CVF Computer Vision and Pattern Recognition Conf., Seattle, WA, Jun. 2024.
    [11]
    X. Luo, A. Rechardt, G. Sun, and K. K. Nejad, “Large language models surpass human experts in predicting neuroscience results,” Nature Human Behavior, 2024. [Online]. Available: https://doi.org/10.1038/s41562-024-02046-9
    [12]
    G.-P. Liu, “Control strategies for digital twin systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 170–180, 2024. doi: 10.1109/JAS.2023.123834
    [13]
    H. Qi, E. Hou, and P. Ye, “Cognitive reinforcement learning for interpretable autonomous driving,” IEEE Journal of Radio Frequency Identification, vol. 8, pp. 627–631, 2024. doi: 10.1109/JRFID.2024.3418649
    [14]
    Y. Li, H. Qi, F. Zhu, Y. Lv, and P. Ye, “Interpretable autonomous driving model based on cognitive reinforcement learning,” in Proc. IEEE Intelligent Vehicles Symp., Jeju, Korea, Jun. 2024.
    [15]
    Y. Bai, A. Jones, K. Ndousse, and A. Askell, “Training a helpful and harmless assistant with reinforcement learning from human feedback,” arXiv preprint arXiv: 2204.05862, 2022.
    [16]
    P. Ye, T. Wang, and F.-Y. Wang, “A survey of cognitive architectures in the past 20 years,” IEEE Trans. Cybernetics, vol. 48, no. 12, pp. 3280–3290, 2018. doi: 10.1109/TCYB.2018.2857704
    [17]
    P. Ye, X. Wang, G. Xiong, S. Chen, and F.-Y. Wang, “TiDEC: A two-layered integrated decision cycle for population evolution,” IEEE Trans. Cybernetics, vol. 51, no. 12, pp. 5897–5906, 2021. doi: 10.1109/TCYB.2019.2957574
    [18]
    P. Ye, X. Wang, W. Zheng, Q. Wei, and F.-Y. Wang, “Parallel cognition: Hybrid intelligence for human-machine interaction and management,” Frontiers of Information Technology & Electronic Engineering, vol. 23, no. 12, pp. 1765–1779, 2022.
    [19]
    P. Berens, K. Cranmer, U. von Luxburg, N. D. Lawrence, and J. Montgomery, “AI for science: An emerging agenda,” arXiv preprint arXiv: 2303.04217, 2023.
    [20]
    Q. Miao and F.-Y. Wang, Artificial Intelligence for Science: Frontiers and Perspectives Based on Parallel Intelligence. Springer Cham, 2024.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (9) PDF downloads(1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return