Citation: | P. Ye, X. Xue, Q. Ni, J. Yang, and F.-Y. Wang, “Parallel experiments: From human participated to a virtual-real hybrid paradigm,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1–5, Aug. 2025. doi: 10.1109/JAS.2025.125474 |
[1] |
X. Xue, X.-N. Yu, D.-Y. Zhou, C. Peng, X. Wang, Z.-B. Zhou, and F.-Y. Wang, “Computational experiments: Past, present and perspective,” Acta Automatica Sinica, vol. 49, no. 2, pp. 246–271, 2023.
|
[2] |
F.-Y. Wang and Y. Shen, “Parallel light fields: A perspective and a framework,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 542–544, 2024. doi: 10.1109/JAS.2023.123174
|
[3] |
X. Xue, D. Zhou, X. Yu, G. Wang, J. Li, X. Xie, L. Cui, and F.-Y. Wang, “Computational experiments for complex social systems: Experiment design and generative explanation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1022–1038, 2024. doi: 10.1109/JAS.2024.124221
|
[4] |
X. Xue, X. Yu, D. Zhou, X. Wang, C. Bi, S. Wang, and F.-Y. Wang, “Computational experiments for complex social systems: Integrated design of experiment system,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1175–1189, 2024. doi: 10.1109/JAS.2023.123639
|
[5] |
D. Xiong, D. Zhang, Y. Chu, Y. Zhao, and X. Zhao, “Intuitive humanrobot-environment interaction with emg signals: A review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1075–1091, 2024. doi: 10.1109/JAS.2024.124329
|
[6] |
P. Ye, B. Song, J. Yang, and G. Xiong, “Dynamic driving style recognition for human machine shared control,” IEEE Trans. Intelligent Vehicles, 2024.
|
[7] |
T. Wang, P. Ye, H. Lv, W. Gong, H. Lu, and F.-Y. Wang, “Modeling digital personality: A fuzzy-logic-based myers-briggs type indicator for fine-grained analytics of digital human,” IEEE Trans. Computational Social Systems, vol. 11, no. 1, pp. 1096–1107, 2024. doi: 10.1109/TCSS.2023.3245127
|
[8] |
M. Kang, J.-Y. Zhu, R. Zhang, J. Park, E. Shechtman, S. Paris, and T. Park, “Scaling up gans for text-to-image synthesis,” in Proc. IEEE/CVF Computer Vision and Pattern Recognition Conf., Vancouver, Canada, Jun. 2023.
|
[9] |
W. J. Yun, M. Shin, S. Jung, S. Kwon, and J. Kim, “Parallelized and randomized adversarial imitation learning for safety-critical self-driving vehicles,” Journal of Communications and Networks, vol. 24, no. 6, pp. 710–721, 2022. doi: 10.23919/JCN.2022.000012
|
[10] |
Z. Yue, P. Zhou, R. Hong, H. Zhang, and Q. Sun, “Few-shot learner parameterization by diffusion time-steps,” in Proc. IEEE/CVF Computer Vision and Pattern Recognition Conf., Seattle, WA, Jun. 2024.
|
[11] |
X. Luo, A. Rechardt, G. Sun, and K. K. Nejad, “Large language models surpass human experts in predicting neuroscience results,” Nature Human Behavior, 2024. [Online]. Available: https://doi.org/10.1038/s41562-024-02046-9
|
[12] |
G.-P. Liu, “Control strategies for digital twin systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 170–180, 2024. doi: 10.1109/JAS.2023.123834
|
[13] |
H. Qi, E. Hou, and P. Ye, “Cognitive reinforcement learning for interpretable autonomous driving,” IEEE Journal of Radio Frequency Identification, vol. 8, pp. 627–631, 2024. doi: 10.1109/JRFID.2024.3418649
|
[14] |
Y. Li, H. Qi, F. Zhu, Y. Lv, and P. Ye, “Interpretable autonomous driving model based on cognitive reinforcement learning,” in Proc. IEEE Intelligent Vehicles Symp., Jeju, Korea, Jun. 2024.
|
[15] |
Y. Bai, A. Jones, K. Ndousse, and A. Askell, “Training a helpful and harmless assistant with reinforcement learning from human feedback,” arXiv preprint arXiv: 2204.05862, 2022.
|
[16] |
P. Ye, T. Wang, and F.-Y. Wang, “A survey of cognitive architectures in the past 20 years,” IEEE Trans. Cybernetics, vol. 48, no. 12, pp. 3280–3290, 2018. doi: 10.1109/TCYB.2018.2857704
|
[17] |
P. Ye, X. Wang, G. Xiong, S. Chen, and F.-Y. Wang, “TiDEC: A two-layered integrated decision cycle for population evolution,” IEEE Trans. Cybernetics, vol. 51, no. 12, pp. 5897–5906, 2021. doi: 10.1109/TCYB.2019.2957574
|
[18] |
P. Ye, X. Wang, W. Zheng, Q. Wei, and F.-Y. Wang, “Parallel cognition: Hybrid intelligence for human-machine interaction and management,” Frontiers of Information Technology & Electronic Engineering, vol. 23, no. 12, pp. 1765–1779, 2022.
|
[19] |
P. Berens, K. Cranmer, U. von Luxburg, N. D. Lawrence, and J. Montgomery, “AI for science: An emerging agenda,” arXiv preprint arXiv: 2303.04217, 2023.
|
[20] |
Q. Miao and F.-Y. Wang, Artificial Intelligence for Science: Frontiers and Perspectives Based on Parallel Intelligence. Springer Cham, 2024.
|