| Citation: | Z. Chen, S. Mo, H. Ke, S. Ding, Z. Jiang, C. Yang, and W. Gui, “CCDNN: A novel deep learning architecture for multi-source data fusion,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 3, pp. 1–13, Mar. 2026. doi: 10.1109/JAS.2025.125411 |
| [1] |
H. Hotelling, “Relations between two sets of variates,” Biometrika, vol. 28, no. 3–4, pp. 321–377, 1936. doi: 10.1093/biomet/28.3-4.321
|
| [2] |
T. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed. New York, USA: John Wiley and Sons, LTD, 1984.
|
| [3] |
C. NM, A. T, L. YO, and C. VD, “Canonical correlation analysis for data fusion and group inferences: Examining applications of medical imaging data,” IEEE Signal Process Mag, vol. 27, no. 4, pp. 39–50, 2010. doi: 10.1109/MSP.2010.936725
|
| [4] |
Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. doi: 10.1109/TPAMI.2013.50
|
| [5] |
L. A. Passos, J. P. Papa, J. Del Ser, A. Hussain, and A. Adeel, “Multimodal audio-visual information fusion using canonical-correlated graph neural network for energy-efficient speech enhancement,” Information Fusion, vol. 90, pp. 1–11, 2023. doi: 10.1016/j.inffus.2022.09.006
|
| [6] |
B. Scholkopf and A. J. Smola, Learning With Kernels Cambridge, USA. MIT Press, 2002.
|
| [7] |
S. Akaho, “A kernel method for canonical correlation analysis,” arXiv preprint arXiv cs/0609071, 2006.
|
| [8] |
K. Fukumizu, F. R. Bach, and A. Gretton, “Statistical consistency of kernel canonical correlation analysis,” J. Machine Learning Research, vol. 8, pp. 361–383, 2007.
|
| [9] |
X. Li, S. Yu, Y. Lei, N. Li, and B. Yang, “Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2068–2081, 2024. doi: 10.1109/JAS.2024.124470
|
| [10] |
J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep learning based attack detection for cyber-physical system cybersecurity: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 377–391, 2021.
|
| [11] |
A. J. Moshayedi, A. S. Khan, S. Yang, and S. M. Zanjani, “Personal image classifier based handy pipe defect recognizer (HPD): Design and test,” in Proc. 7th Int. Conf. Intelligent Computing and Signal Processing, 2022, pp. 1721–1728.
|
| [12] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, 2021. doi: 10.1109/JAS.2020.1003381
|
| [13] |
G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical correlation analysis,” in Proc. 30th Int. Conf. Machine Learning, 2013, vol. 28, no. 3. pp. 1247–1255.
|
| [14] |
H. Asoh and O. Takechi, “An approximation of nonlinear canonical correlation analysis by multilayer perceptrons,” in Proc. Int. Conf. Artificial Neural Networks, 1994, pp. 713–716.
|
| [15] |
X. Yuan, W. Xu, Y. Wang, C. Yang, and W. Gui, “A deep residual pls for data-driven quality prediction modeling in industrial process,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1777–1785, 2024. doi: 10.1109/JAS.2024.124578
|
| [16] |
A. J. Moshayedi, A. S. Khan, M. Davari, T. Mokhtari, and M. E. Andani, “Micro robot as the feature of robotic in healthcare approach from design to application: The state of art and challenges,” EAI Endorsed Trans. AI and Robotics, vol. 3, 2024.
|
| [17] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 5169–5173, 2022.
|
| [18] |
G. Xu, A. S. Khan, A. J. Moshayedi, X. Zhang, and Y. Shuxin, “The object detection, perspective and obstacles in robotic: A review,” EAI Endorsed Trans. AI and Robotics, vol. 1, p. 1, 2022.
|
| [19] |
A. G. Barnston and C. F. Ropelewski, “Prediction of ENSO episodes using canonical correlation analysis,” J. Climate, vol. 5, p. 11, 1992.
|
| [20] |
L. Sun, S. Ji, S. Yu, and J. Ye, “On the equivalence between canonical correlation analysis and orthonormalized partial least squares,” in Proc. 21st Int. Joint Conf. Artificial Intelligence, Pasadena, USA, Jul. 2009, pp. 1230–1235.
|
| [21] |
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: An overview with application to learning methods,” Neural Computation, vol. 16, no. 12, pp. 2639–2664, 12, 2004. doi: 10.1162/0899766042321814
|
| [22] |
B. Juricek, D. Seborg, and W. Larimore, “Fault detection using canonical variate analysis,” Industrial & Engineering Chemistry Research, vol. 43, no. 2, pp. 458–474, Jan. 2004.
|
| [23] |
S. X. Ding, Data-Driven Design of Fault Diagnosis and Fault-tolerant Control Systems. Lonson UK: Springer-Verlag, 2014.
|
| [24] |
Z. W. Chen, S. X. Ding, K. Zhang, Z. B. Li, and Z. K. Hu, “Canonical correlation analysis-based fault detection methods with application to alumina evaporation process,” Control Engineering Practice, vol. 46, pp. 51–58, 2016. doi: 10.1016/j.conengprac.2015.10.006
|
| [25] |
Q. Jiang and X. Yan, “Learning deep correlated representations for nonlinear process monitoring,” IEEE Trans. Industrial Informatics, vol. 15, no. 12, pp. 6200–6209, 2019. doi: 10.1109/TII.2018.2886048
|
| [26] |
H. Chen, Z. Chen, Z. Chai, B. Jiang, and B. Huang, “A single-side neural network-aided canonical correlation analysis with applications to fault diagnosis,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9454–9466, 2022. doi: 10.1109/TCYB.2021.3060766
|
| [27] |
A. Er, D. Y. Ding, B. Er, M. Uzun, M. Cakmak, C. Sadee, G. Durhan, M. N. Ozmen, M. D. Tanriover, A. Topeli, S. Y. Aydin, R. Tibshirani, S. Unal, and O. Gevaert, “Multimodal data fusion using sparse canonical correlation analysis and cooperative learning: A covid-19 cohort study,” NPJ Digit Med, vol. 7, no. 1, p. 117, 2024. doi: 10.1038/s41746-024-01128-2
|
| [28] |
V. Uurtio, J. a. M. Monteiro, J. Kandola, J. Shawe-Taylor, D. Fernandez-Reyes, and J. Rousu, “A tutorial on canonical correlation methods,” ACM Comput. Surv., vol. 50, p. 6, Nov. 2017.
|
| [29] |
F. R. Bach and M. I. Jordan, “Kernel independent component analysis,” J. Mach. Learn. Res., vol. 3, pp. 1–48, 2003.
|
| [30] |
M. J. Healy, “A rotation method for computing canonical correlations,” Mathematics of Computation, vol. 11, pp. 83–86, 1957. doi: 10.1090/S0025-5718-1957-0085600-6
|
| [31] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 11, pp. 8778–8790, 2022.
|
| [32] |
W. Wang, R. Arora, K. Livescu, and J. Bilmes, “On deep multiview representation learning,” in Proc. Int. Conf. Machine Learning, 2015, pp. 1083–1092.
|
| [33] |
X. Li, Y. Xu, N. Li, B. Yang, and Y. Lei, “Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 121–134, 2023. doi: 10.1109/JAS.2022.105935
|
| [34] |
X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, 2023. doi: 10.1109/JAS.2023.123396
|
| [35] |
Z. W. Chen, S. X. Ding, T. Peng, C. H. Yang, and W. H. Gui, “Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms,” IEEE Trans. Industrial Electronics, vol. 65, no. 2, pp. 1559–1567, 2018. doi: 10.1109/TIE.2017.2733501
|
| [36] |
S. Akaho, “A kernel method for canonical correlation analysis,” 2007.
|
| [37] |
C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2016. doi: 10.1109/TPAMI.2015.2439281
|
| [38] |
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. doi: 10.1109/5.726791
|
| [39] |
I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein auto-encoders,” arXiv preprint arXiv: 1711.01558, 2017.
|
| [40] |
Z. Chen, K. Liang, S. X. Ding, C. Yang, T. Peng, and X. Yuan, “A comparative study of deep neural network-aided canonical correlation analysis-based process monitoring and fault detection methods,” IEEETrans. Neural Networks and Learning Systems, vol. 33, no. 11, pp. 6158–6172, 2021.
|
| [41] |
S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly accurate machine fault diagnosis using deep transfer learning,” IEEE Trans. Industrial Informatics, vol. 15, no. 4, pp. 2446–2455, 2019. doi: 10.1109/TII.2018.2864759
|
| [42] |
A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation modeling for aircraft engine run-to-failure simulation,” in Proc. 1st Int. Conf. Prognostics and Health Management, Oct. 2008.
|
| [43] |
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 770–778.
|