Citation: | G. Lv, B. Wang, C. Xu, W. Ding, and J. Liu, “MFAINet: Multi-receptive field feature fusion with attention-integrated for polyp segmentation,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125408 |
[1] |
X. Tang, X. Qiao, C. Chen, et al., “Regulation mechanism of long noncoding rnas in colon cancer development and progression,” Yonsei medical journal, vol. 60, no. 4, pp. 319–325, 2019. doi: 10.3349/ymj.2019.60.4.319
|
[2] |
M. P. Singh, S. Rai, A. Pandey, et al., “Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine,” Genes & Diseases, vol. 8, no. 2, pp. 133–145, 2021.
|
[3] |
R. Zhang, G. Li, Z. Li, and et al., “Adaptive context selection for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd Int. Conf., vol. 12266, (October 4–8, Proceedings, Part VI 23), pp. 253–262, Springer Int. Publishing, 2020.
|
[4] |
M. Maida, D. S. Dahiya, Y. R. Shah, et al., “Screening and surveillance of colorectal cancer: A review of the literature,” Cancers, vol. 16, no. 15, p. 2746, 2024. doi: 10.3390/cancers16152746
|
[5] |
R. Abedizadeh, F. Majidi, H. R. Khorasani, et al., “Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments,” Cancer and Metastasis Reviews, vol. 43, no. 2, pp. 729–753, 2024. doi: 10.1007/s10555-023-10158-3
|
[6] |
S. Y. Kim, H. Kim, and H. J. Park, “Adverse events related to colonoscopy: Global trends and future challenges,” World Journal of Gastroenterology, vol. 25, pp. 190–204, 2019. doi: 10.3748/wjg.v25.i2.190
|
[7] |
E. Sanderson and B. J. Matuszewski, “Fcn-transformer feature fusion for polyp segmentation,” in Annual Conf. on Medical Image Understanding and Analysis, (Cham), pp. 892–907, Springer Int. Publishing, 2022.
|
[8] |
B. Sushma, C. Raghavendra, and J. Prashanth, “Cnn based u-net with modified skip connections for colon polyp segmentation,” 2021 5th Int. Conf. on Computing Methodologies and Communication (ICCMC), pp. 1762–1766, 2021.
|
[9] |
D. Jha, P. H. Smedsrud, M. Riegler, and et al., “Kvasir-seg: A segmented polyp dataset,” pp. 451–462, 2020.
|
[10] |
D. Vázquez, J. Bernal, F. J. Sánchez, and et al., “A benchmark for endoluminal scene segmentation of colonoscopy images,” Journal of healthcare engineering, vol. 2017, no. 1, p. 4037190, 2017.
|
[11] |
J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” Int. Journal of Computer Assisted Radiology and Surgery, vol. 9, pp. 283–293, 2014. doi: 10.1007/s11548-013-0926-3
|
[12] |
N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE Trans. Medical Imaging, vol. 35, pp. 630–644, 2016. doi: 10.1109/TMI.2015.2487997
|
[13] |
J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. R. de Miguel, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, vol. 43, pp. 99–111, 2015. doi: 10.1016/j.compmedimag.2015.02.007
|
[14] |
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th Int. Conf., (October 5–9, 2015, Proceedings, Part III), pp. 234–241, Springer Int. Publishing, 2015.
|
[15] |
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th Int. Workshop, DLMIA 2018, and 8th Int. Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S.., vol. 11045, pp. 3–11, 2018.
|
[16] |
Y. Fang, C. Chen, Y. Yuan, and R. K.-Y. Tong, “Selective feature aggregation network with area-boundary constraints for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd Int. Conf., (October 13–17, 2019, Proceedings, Part I 22), pp. 302–310, Springer Int. Publishing, 2019.
|
[17] |
D.-P. Fan, G. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd Int. Conf., (October 4–8, 2020, Proceedings, Part VI 23), pp. 263–273, Springer Int. Publishing, 2020.
|
[18] |
J. Wei, Y. Hu, R. Zhang, et al., “Shallow attention network for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th Int. Conf., (September 27–October 1Proceedings, Part I 24), pp. 699–708, Springer Int. Publishing, 2021.
|
[19] |
B. Dong, W. Wang, D.-P. Fan, J. Li, H. Fu, and L. Shao, “Polyp-pvt: Polyp segmentation with pyramid vision transformers,” CAAI Artificial Intelligence Research, vol. 2, p. 9150015, 2023.
|
[20] |
N. T. Duc, N. T. Oanh, N. T. Thuy, T. M. Triet, and V. S. Dinh, “Colonformer: An efficient transformer based method for colon polyp segmentation,” IEEE Access, vol. 10, pp. 80575–80586, 2022. doi: 10.1109/ACCESS.2022.3195241
|
[21] |
M. Nguyen, T. Bui, Q. Nguyen, T. T. Nguyen, and T. V. Pham, “Lapformer: A light and accurate polyp segmentation transformer,” ArXiv, vol. abs/2210.04393, 2022.
|
[22] |
X. Zhao, H. Jia, Y. Pang, L. Lv, F. Tian, L. Zhang, W. Sun, and H. Lu, “M2snet: Multi-scale in multi-scale subtraction network for medical image segmentation,” ArXiv, vol. abs/2303.10894, 2023.
|
[23] |
J. Liu, Q. Chen, Y. Zhang, Z. Wang, D. Xin, and J. Wang, “Multi-level feature fusion network combining attention mechanisms for polyp segmentation,” Inf. Fusion, vol. 104, p. 102195, 2023.
|
[24] |
W. Li, Y. Zhao, F. Li, and L. Wang, “Mia-net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation,” Knowl. Based Syst., vol. 247, p. 108824, 2022. doi: 10.1016/j.knosys.2022.108824
|
[25] |
N.-T. Bui, D.-H. Hoang, Q.-T. Nguyen, M.-T. Tran, and N. Le, “Meganet: Multi-scale edge-guided attention network for weak boundary polyp segmentation,” 2024 IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV), pp. 7970–7979, 2023.
|
[26] |
F. Liu, Z. Hua, J. Li, et al., “Dbmf: Dual branch multiscale feature fusion network for polyp segmentation,” Computers in Biology and Medicine, vol. 151, p. 106304, 2022. doi: 10.1016/j.compbiomed.2022.106304
|
[27] |
W. Li, Z. Huang, F. Li, et al., “CIFG-Net: Cross-level information fusion and guidance network for polyp segmentation,” Computers in Biology and Medicine, vol. 169, p. 107931, 2024. doi: 10.1016/j.compbiomed.2024.107931
|
[28] |
Y. Xia, H. Yun, and Y. Liu, “MFEFNet: Multi-scale feature enhancement and fusion network for polyp segmentation,” Computers in Biology and Medicine, vol. 157, p. 106735, 2023. doi: 10.1016/j.compbiomed.2023.106735
|
[29] |
U. Muhammad, Z. Huang, and N. Gu, “MMFIL-Net: Multi-level and multi-source feature interactive lightweight network for polyp segmentation,” Displays, vol. 81, p. 102600, 2024. doi: 10.1016/j.displa.2023.102600
|
[30] |
N. T. Bui, D. H. Hoang, Q. T. Nguyen, et al., “Meganet: Multi-scale edge-guided attention network for weak boundary polyp segmentation,” in Proc. the IEEE/CVF Winter Conf. on Applications of Computer Vision, pp. 7985–7994, 2024.
|
[31] |
X. Liu and S. Song, “Attention combined pyramid vision transformer for polyp segmentation,” Biomedical Signal Processing and Control, vol. 89, p. 105792, 2024. doi: 10.1016/j.bspc.2023.105792
|
[32] |
M. M. Rahman and R. Marculescu, “Medical image segmentation via cascaded attention decoding,” in Proc. the IEEE/CVF Winter Conf. on Applications of Computer Vision, pp. 6222–6231, 2023.
|
[33] |
N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE Trans. Medical Imaging, vol. 35, no. 2, pp. 630–644, 2015.
|
[34] |
A. V. Mamonov, I. N. Figueiredo, P. N. Figueiredo, and Y.-H. R. Tsai, “Automated polyp detection in colon capsule endoscopy,” IEEE Trans. Medical Imaging, vol. 33, no. 7, pp. 1488–1502, 2014. doi: 10.1109/TMI.2014.2314959
|
[35] |
S. Y. Park, D. Sargent, I. Spofford, et al., “A colon video analysis framework for polyp detection,” IEEE Trans. Biomedical Engineering, vol. 59, no. 5, pp. 1408–1418, 2012. doi: 10.1109/TBME.2012.2188397
|
[36] |
C. Van Wijk, V. F. Van Ravesteijn, F. M. Vos, et al., “Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow,” IEEE Trans. Medical Imaging, vol. 29, no. 3, pp. 688–698, 2010. doi: 10.1109/TMI.2009.2031323
|
[37] |
D. Jha, P. H. Smedsrud, M. Riegler, D. Johansen, T. de Lange, P. Halvorsen, and H. D. Johansen, “Resunet++: An advanced architecture for medical image segmentation,” 2019 IEEE Int. Symposium on Multimedia (ISM), pp. 225–2255, 2019.
|
[38] |
T. Zhou, Y. Zhou, K. He, et al., “Cross-level feature aggregation network for polyp segmentation,” Pattern Recognition, vol. 140, p. 109555, 2023. doi: 10.1016/j.patcog.2023.109555
|
[39] |
B. Murugesan, K. Sarveswaran, S. M. Shankaranarayana, K. Ram, and M. Sivaprakasam, “Psi-net: Shape and boundary aware joint multi-task deep network for medical image segmentation,” 2019 41st Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226, 2019.
|
[40] |
Y. Zhang, H. Liu, and Q. Hu, “Transfuse: Fusing transformers and cnns for medical image segmentation,” in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 14–24, 2021.
|
[41] |
W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pvt v2: Improved baselines with pyramid vision transformer,” Computational Visual Media, vol. 8, pp. 415–424, 2021.
|
[42] |
R. Margolin, L. Zelnik-Manor, and A. Tal, “How to evaluate foreground maps?,” in Proc. the IEEE Conf. On Computer Vision And Pattern Recognition, pp. 248–255, 2014.
|
[43] |
F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Sorkine-Hornung, “Saliency filters: Contrast based filtering for salient region detection,” 2012 IEEE Conf. on Computer Vision and Pattern Recognition, pp. 733–740, 2012.
|
[44] |
I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv: 1711.05101, 2017.
|
[45] |
J. Wei, S. Wang, and Q. Huang, “F3net: Fusion, feedback and focus for salient object detection,” in Proc. the AAAI Conf. on Artificial Intelligence, vol. 34, pp. 12321–12328, 2020.
|
[46] |
C.-H. Huang, H.-Y. Wu, and Y.-L. S. Lin, “Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps,” ArXiv, vol. abs/2101.07172, 2021.
|
[47] |
K. Patel, A. M. Bur, and G. Wang, “Enhanced u-net: A feature enhancement network for polyp segmentation,” 2021 18th Conf. on Robots and Vision (CRV), pp. 181–188, 2021.
|
[48] |
P. Naylor, M. Lae, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE Trans. Medical Imaging, vol. 38, no. 2, pp. 448–459, 2018.
|
[49] |
R. Azad, M. Asadi-Aghbolaghi, M. Fathy, et al., “Bi-directional convlstm u-net with densely connected convolutions,” in Proc. the IEEE/CVF Int. Conf. on Computer Vision Workshops, pp. 0–0, 2019.
|