Citation: | Q. Li, X. Liu, X. Hu, M. Ahad, M. Ren, L. Yao, and Y. Huang, “Machine learning-based prediction of depressive disorders via various data modalities: A survey,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1320–1349, Jul. 2025. doi: 10.1109/JAS.2025.125393 |
[1] |
Q. Wang, “The social determinants of depressive disorders in China,” Lancet Psychiatry, vol. 8, no. 11, pp. 939–940, Nov. 2021. doi: 10.1016/S2215-0366(21)00389-8
|
[2] |
D. Bhugra and A. Mastrogianni, “Globalisation and mental disorders: Overview with relation to depression,” Br. J. Psychiatry, vol. 184, no. 1, pp. 10–20, Jan. 2004. doi: 10.1192/bjp.184.1.10
|
[3] |
T. S. S. Rao, M. R. Asha, B. N. Ramesh, and K. S. J. Rao, “Understanding nutrition, depression and mental illnesses,” Indian J. Psychiatry, vol. 50, no. 2, pp. 77–82, Apr.-Jun. 2008. doi: 10.4103/0019-5545.42391
|
[4] |
WHO. Depressive disorder (depression). 2021. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/depression.
|
[5] |
R. Peveler, A. Carson, and G. Rodin, “Depression in medical patients,” BMJ, vol. 325, no. 7356, pp. 149–152, Jul. 2002. doi: 10.1136/bmj.325.7356.149
|
[6] |
K. Demyttenaere, A. Bonnewyn, R. Bruffaerts, T. Brugha, R. De Graaf, and J. Alonso, “Comorbid painful physical symptoms and depression: Prevalence, work loss, and help seeking,” J. Affect. Disord., vol. 92, no. 2−3, pp. 185–193, Jun. 2006. doi: 10.1016/j.jad.2006.01.007
|
[7] |
A. Singh and N. Misra, “Loneliness, depression and sociability in old age,” Ind. Psychiatry J., vol. 18, no. 1, pp. 51–55, Jan. 2009. doi: 10.4103/0972-6748.57861
|
[8] |
D. Eisenberg, S. E. Gollust, E. Golberstein, and J. L. Hefner, “Prevalence and correlates of depression, anxiety, and suicidality among university students,” Am. J. Orthopsychiatry, vol. 77, no. 4, pp. 534–542, Oct. 2007. doi: 10.1037/0002-9432.77.4.534
|
[9] |
I. O. Bergfeld, M. Mantione, M. Figee, P. R. Schuurman, A. Lok, and D. Denys, “Treatment-resistant depression and suicidality,” J. Affect. Disord., vol. 235, pp. 362–367, Aug. 2018. doi: 10.1016/j.jad.2018.04.016
|
[10] |
L. Hemming, G. Haddock, J. Shaw, and D. Pratt, “Alexithymia and its associations with depression, suicidality, and aggression: An overview of the literature,” Front. Psychiatry, vol. 10, p. 203, Apr. 2019.
|
[11] |
J. X. W. Wiebenga, H. D. Heering, M. Eikelenboom, A. M. Van Hemert, P. Van Oppen, and B. W. J. H. Penninx, “Associations of three major physiological stress systems with suicidal ideation and suicide attempts in patients with a depressive and/or anxiety disorder,” Brain Behav. Immun., vol. 102, pp. 195–205, May 2022. doi: 10.1016/j.bbi.2022.02.021
|
[12] |
D. Faust and J. Ziskin, “The expert witness in psychology and psychiatry,” Science, vol. 241, no. 4861, pp. 31–35, Jul. 1988. doi: 10.1126/science.3291114
|
[13] |
P. Cassano and M. Fava, “Depression and public health: An overview,” J. Psychosom. Res., vol. 53, no. 4, pp. 849–857, Oct. 2002. doi: 10.1016/S0022-3999(02)00304-5
|
[14] |
D. C. Mohr, S. L. Hart, I. Howard, L. Julian, L. Vella, C. Catledge, and M. D. Feldman, “Barriers to psychotherapy among depressed and nondepressed primary care patients,” Ann. Behav. Med., vol. 32, no. 3, pp. 254–258, Dec. 2006. doi: 10.1207/s15324796abm3203_12
|
[15] |
R. L. Kravitz, D. A. Paterniti, R. M. Epstein, A. B. Rochlen, R. A. Bell, C. Cipri, E. F. Y. Garcia, M. D. Feldman, and P. Duberstein, “Relational barriers to depression help-seeking in primary care,” Patient Educ. Couns., vol. 82, no. 2, pp. 207–213, Feb. 2011. doi: 10.1016/j.pec.2010.05.007
|
[16] |
Y. Yu, Dataset. 2025. [Online]. Available: http://www.cbsr.ia.ac.cn/users/ynyu/dataset/.
|
[17] |
N. Cheng and S. Mohiuddin, “Addressing the nationwide shortage of child and adolescent psychiatrists: Determining factors that influence the decision for psychiatry residents to pursue child and adolescent psychiatry training,” Acad. Psychiatry, vol. 46, no. 1, pp. 18–24, Feb. 2022. doi: 10.1007/s40596-021-01554-4
|
[18] |
T. Butryn, L. Bryant, C. Marchionni, and F. Sholevar, “The shortage of psychiatrists and other mental health providers: Causes, current state, and potential solutions,” Int. J. Acad. Med., vol. 3, no. 1, pp. 5–9, Jan.-Jun. 2017. doi: 10.4103/IJAM.IJAM_49_17
|
[19] |
Substance Abuse and Mental Health Services Administration, “Key substance use and mental health indicators in the united states: Results from the 2019 national survey on drug use and health,” SRH, 2020.
|
[20] |
B. A. Pescosolido, T. R. Medina, J. K. Martin, and J. S. Long, “The “backbone” of stigma: Identifying the global core of public prejudice associated with mental illness,” Am. J. Public Health, vol. 103, no. 5, pp. 853–860, May 2013. doi: 10.2105/AJPH.2012.301147
|
[21] |
S. Wang, X. Zhu, W. Ding, and A. A. Yengejeh, “Cyberbullying and cyberviolence detection: A triangular user-activity-content view,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1384–1405, Aug. 2022. doi: 10.1109/JAS.2022.105740
|
[22] |
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, H. Adeli, and D. P. Subha, “Automated EEG-based screening of depression using deep convolutional neural network,” Comput. Methods Programs Biomed., vol. 161, pp. 103–113, Jul. 2018. doi: 10.1016/j.cmpb.2018.04.012
|
[23] |
R. Wang, Y. Hao, Q. Yu, M. Chen, I. Humar, and G. Fortino, “Depression analysis and recognition based on functional near-infrared spectroscopy,” IEEE J. Biomed. Health Inform., vol. 25, no. 12, pp. 4289–4299, Dec. 2021. doi: 10.1109/JBHI.2021.3076762
|
[24] |
W. C. de Melo, E. Granger, and A. Hadid, “Combining global and local convolutional 3D networks for detecting depression from facial expressions,” in Proc. 14th IEEE Int. Conf. Autom. Face and Gesture Recognition, Lille, France, 2019, pp. 1−8.
|
[25] |
F. Ringeval, B. Schuller, M. Valstar, J. Gratch, R. Cowie, S. Scherer, S. Mozgai, N. Cummins, M. Schmitt, and M. Pantic, “AVEC 2017: Real-life depression, and affect recognition workshop and challenge,” in Proc. 7th Annu. Workshop on Audio/Visual Emotion Challenge, Mountain View, USA, 2017, pp. 3−9.
|
[26] |
H. Lu, S. Xu, X. Hu, E. Ngai, Y. Guo, W. Wang, and B. Hu, “Postgraduate student depression assessment by multimedia gait analysis,” IEEE MultiMedia, vol. 29, no. 2, pp. 56–65, Apr.–Jun. 2022. doi: 10.1109/MMUL.2022.3141118
|
[27] |
G. Rao, Y. Zhang, L. Zhang, Q. Cong, and Z. Feng, “MGL-CNN: A hierarchical posts representations model for identifying depressed individuals in online forums,” IEEE Access, vol. 8, pp. 32395–32403, Feb. 2020. doi: 10.1109/ACCESS.2020.2973737
|
[28] |
L. Jin, S. Li, J. Yu, and J. He, “Robot manipulator control using neural networks: A survey,” Neurocomputing, vol. 285, pp. 23–34, Apr. 2018. doi: 10.1016/j.neucom.2018.01.002
|
[29] |
Y. Zhang, S. Li, and X. Zhou, “Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3573–3582, May 2019. doi: 10.1109/TIE.2018.2851960
|
[30] |
S. Li, Z. Shao, and Y. Guan, “A dynamic neural network approach for efficient control of manipulators,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 5, pp. 932–941, May 2019. doi: 10.1109/TSMC.2017.2690460
|
[31] |
J. Li, Y. Zhang, S. Li, and M. Mao, “New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators,” IEEE Trans. Ind. Inf., vol. 14, no. 8, pp. 3416–3425, Aug. 2018. doi: 10.1109/TII.2017.2780892
|
[32] |
A. J. Moshayedi, N. M. I. Uddin, A. S. Khan, J. Zhu, and M. E. Andani, “Designing and developing a vision-based system to investigate the emotional effects of news on short sleep at noon: An experimental case study,” Sensors, vol. 23, no. 20, p. 8422, Oct. 2023. doi: 10.3390/s23208422
|
[33] |
J. Luo, M. Wu, D. Gopukumar, Y. Zhao, “Big data application in biomedical research and health care: A literature review,” Biomed. Inform. Insights, vol. 8, pp. 1–10, Jan. 2016.
|
[34] |
S.-C. Liao, C.-T. Wu, H.-C. Huang, W.-T. Cheng, and Y.-H. Liu, “Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns,” Sensors, vol. 17, no. 6, p. 1385, Jun. 2017. doi: 10.3390/s17061385
|
[35] |
M. Wei, J. Qin, R. Yan, H. Li, Z. Yao, and Q. Lu, “Identifying major depressive disorder using Hurst exponent of resting-state brain networks,” Psychiatry Res. Neuroimaging, vol. 214, no. 3, pp. 306–312, Dec. 2013. doi: 10.1016/j.pscychresns.2013.09.008
|
[36] |
M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic, “AVEC 2013: The continuous audio/visual emotion and depression recognition challenge,” in Proc. 3rd ACM Int. Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 2013, pp. 3−10.
|
[37] |
S. Tsugawa, Y. Kikuchi, F. Kishino, K. Nakajima, Y. Itoh, and H. Ohsaki, “Recognizing depression from twitter activity,” in Proc. 33rd Annu. ACM Conf. Human Factors in Computing Systems, Seoul, South Korea, 2015, pp. 3187−3196.
|
[38] |
G. Xu, A. S. Khan, A. J. Moshayedi, X. Zhang, and S. Yang, “The object detection, perspective and obstacles in robotic: A review,” EAI Endorsed Trans. AI Robot., vol. 1, no. 1, p. e13, Oct. 2022. doi: 10.4108/airo.v1i1.2709
|
[39] |
A. J. Moshayedi, A. S. Khan, S. Yang, and S. M. Zanjani, “Personal image classifier based handy pipe defect recognizer (HPD): Design and test,” in Proc. 7th Int. Conf. Intelligent Computing and Signal Processing, Xi’an, China, 2022, pp. 1721−1728.
|
[40] |
A. J. Moshayedi, K. S. Reza, A. S. Khan, and A. Nawaz, “Integrating virtual reality and robotic operation system (ROS) for AGV navigation,” EAI Endorsed Trans. AI Robot., vol. 2, Apr. 2023.
|
[41] |
A. J. Moshayedi, A. S. Roy, L. Liao, A. S. Khan, A. Kolahdooz, and A. Eftekhari, “Design and development of FOODIEBOT robot: From simulation to design,” IEEE Access, vol. 12, pp. 36148–36172, Jan. 2024. doi: 10.1109/ACCESS.2024.3355278
|
[42] |
G. Sharma, A. Parashar, and A. M. Joshi, “DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression,” Biomed. Signal Process. Control, vol. 66, p. 102393, Apr. 2021. doi: 10.1016/j.bspc.2020.102393
|
[43] |
M. Mousavian, J. Chen, and S. Greening, “Depression detection using atlas from fMRI images,” in Proc. 19th IEEE Inter. Conf. Machine Learning and Applications, Miami, USA, 2020, pp. 1348−1353.
|
[44] |
P. Zhang, M. Wu, H. Dinkel, and K. Yu, “DEPA: Self-supervised audio embedding for depression detection,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 135−143.
|
[45] |
J. Yang, H. Lu, C. Li, X. Hu, and B. Hu, “Data augmentation for depression detection using skeleton-based gait information,” Med. Biol. Eng. Comput., vol. 60, no. 9, pp. 2665–2679, Jul. 2022. doi: 10.1007/s11517-022-02595-z
|
[46] |
U. Lee, G. Jung, E. Y. Ma, J. S. Kim, H. Kim, J. Alikhanov, Y. Noh, and H. Kim, “Toward data-driven digital therapeutics analytics: Literature review and research directions,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 42–66, Jan. 2023. doi: 10.1109/JAS.2023.123015
|
[47] |
K. M. Hasib, M. R. Islam, S. Sakib, M. A. Akbar, I. Razzak, and M. S. Alam, “Depression detection from social networks data based on machine learning and deep learning techniques: An interrogative survey,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 4, pp. 1568–1586, Aug. 2023. doi: 10.1109/TCSS.2023.3263128
|
[48] |
L. He, M. Niu, P. Tiwari, P. Marttinen, R. Su, J. Jiang, C. Guo, H. Wang, S. Ding, Z. Wang, X. Pan, and W. Dang, “Deep learning for depression recognition with audiovisual cues: A review,” Inf. Fusion, vol. 80, pp. 56–86, Apr. 2022. doi: 10.1016/j.inffus.2021.10.012
|
[49] |
S. Chancellor and M. De Choudhury, “Methods in predictive techniques for mental health status on social media: A critical review,” NPJ Digital Med., vol. 3, no. 1, p. 43, Mar. 2020. doi: 10.1038/s41746-020-0233-7
|
[50] |
A. Safayari and H. Bolhasani, “Depression diagnosis by deep learning using EEG signals: A systematic review,” Med. Novel Technol. Devices, vol. 12, p. 100102, Dec. 2021. doi: 10.1016/j.medntd.2021.100102
|
[51] |
A. Ashraf, T. S. Gunawan, B. S. Riza, E. V. Haryanto, and Z. Janin, “On the review of image and video-based depression detection using machine learning,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 3, pp. 1677–1684, Sept. 2020.
|
[52] |
S. Aleem, N. U. Huda, R. Amin, S. Khalid, S. S. Alshamrani, and A. Alshehri, “Machine learning algorithms for depression: Diagnosis, insights, and research directions,” Electronics, vol. 11, no. 7, p. 1111, Mar. 2022. doi: 10.3390/electronics11071111
|
[53] |
P. Wu, R. Wang, H. Lin, F. Zhang, J. Tu, and M. Sun, “Automatic depression recognition by intelligent speech signal processing: A systematic survey,” CAAI Trans. Intell. Technol., vol. 8, no. 3, pp. 701–711, Sept. 2023. doi: 10.1049/cit2.12113
|
[54] |
A. Sarkar, A. Singh, and R. Chakraborty, “A deep learning-based comparative study to track mental depression from EEG data,” Neurosci. Inf., vol. 2, no. 4, p. 100039, Dec. 2022.
|
[55] |
R. Salas-Zárate, G. Alor-Hernández, M. del Pilar Salas-Zárate, M. A. Paredes-Valverde, M. Bustos-López, and J. L. Sánchez-Cervantes, “Detecting depression signs on social media: A systematic literature review,” Healthcare, vol. 10, no. 2, p. 291, Jan. 2022. doi: 10.3390/healthcare10020291
|
[56] |
S. J. Pinto and M. Parente, “Comprehensive review of depression detection techniques based on machine learning approach,” Soft Comput., vol. 28, no. 17, pp. 10701–10725, Jul. 2024.
|
[57] |
S. Bhadra and C. J. Kumar, “An insight into diagnosis of depression using machine learning techniques: A systematic review,” Curr. Med. Res. Opin., vol. 38, no. 5, pp. 749–771, Feb. 2022. doi: 10.1080/03007995.2022.2038487
|
[58] |
A. Widmann, E. Schröger, and B. Maess, “Digital filter design for electrophysiological data-a practical approach,” J. Neurosci. Methods, vol. 250, pp. 34–46, Jul. 2015. doi: 10.1016/j.jneumeth.2014.08.002
|
[59] |
D. M. Schnyer, P. C. Clasen, C. Gonzalez, and C. G. Beevers, “Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder,” Psychiatry Res. Neuroimaging, vol. 264, pp. 1–9, Jun. 2017. doi: 10.1016/j.pscychresns.2017.03.003
|
[60] |
J. R. Sato, J. Moll, S. Green, J. F. W. Deakin, C. E. Thomaz, and R. Zahn, “Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression,” Psychiatry Res. Neuroimaging, vol. 233, no. 2, pp. 289–291, Aug. 2015. doi: 10.1016/j.pscychresns.2015.07.001
|
[61] |
R. Ramasubbu, M. R. G. Brown, F. Cortese, I. Gaxiola, B. Goodyear, A. J. Greenshaw, S. M. Dursun, and R. Greiner, “Accuracy of automated classification of major depressive disorder as a function of symptom severity,” NeuroImage Clin., vol. 12, pp. 320–331, Feb. 2016. doi: 10.1016/j.nicl.2016.07.012
|
[62] |
B. Vai, L. Parenti, I. Bollettini, C. Cara, C. Verga, E. Melloni, E. Mazza, S. Poletti, C. Colombo, and F. Benedetti, “Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging,” Eur. Neuropsychopharmacol., vol. 34, pp. 28–38, May 2020. doi: 10.1016/j.euroneuro.2020.03.008
|
[63] |
Y. Y. Wei, Q. Chen, A. Curtin, L. Tu, X. Tang, Y. Y. Tang, L. H. Xu, Z. Y. Qian, J. Zhou, C. Z. Zhu, T. H. Zhang, and J. J. Wang, “Functional near-infrared spectroscopy (fNIRS) as a tool to assist the diagnosis of major psychiatric disorders in a Chinese population,” Eur. Arch. Psychiatry Clin. Neurosci., vol. 271, no. 4, pp. 745–757, Apr. 2021. doi: 10.1007/s00406-020-01125-y
|
[64] |
Y. Wang, S. Qiu, D. Li, C. Du, B. L. Lu, and H. He, “Multi-modal domain adaptation variational autoencoder for EEG-based emotion recognition,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1612–1626, Sept. 2022. doi: 10.1109/JAS.2022.105515
|
[65] |
A. Lenartowicz and R. A. Poldrack, “Brain imaging,” Encyclopedia of Behavioral Neuroscience, 2nd edition, pp. 77–83, 2017.
|
[66] |
E. J. Nestler, M. Barrot, R. J. Dileone, A. J. Eisch, S. J. Gold, and L. M. Monteggia, “Neurobiology of depression,” Neuron, vol. 34, no. 1, pp. 13–25, Mar. 2002. doi: 10.1016/S0896-6273(02)00653-0
|
[67] |
G. Nilsonne and F. E. Harrell, “EEG-based model and antidepressant response,” Nat. Biotechnol., vol. 39, no. 1, pp. 27–27, Jan. 2021. doi: 10.1038/s41587-020-00768-5
|
[68] |
M. Shim, M. J. Jin, C. H. Im, and S. H. Lee, “Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features,” NeuroImage Clin., vol. 24, p. 102001, 2019. doi: 10.1016/j.nicl.2019.102001
|
[69] |
H. Jiang, T. Popov, P. Jylänki, K. Bi, Z. Yao, Q. Lu, O. Jensen, and M. A. J. Van Gerven, “Predictability of depression severity based on posterior alpha oscillations,” Clin. Neurophysiol., vol. 127, no. 4, pp. 2108–2114, Apr. 2016. doi: 10.1016/j.clinph.2015.12.018
|
[70] |
X. Li, T. Cao, S. Sun, B. Hu, and M. Ratcliffe, “Classification study on eye movement data: Towards a new approach in depression detection,” in Proc. IEEE Congr. on Evolutionary Computation, Vancouver, Canada, 2016, pp. 1227−1232.
|
[71] |
A. Y. Kim, E. H. Jang, S. Kim, K. W. Choi, H. J. Jeon, H. Y. Yu, and S. Byun, “Automatic detection of major depressive disorder using electrodermal activity,” Sci. Rep., vol. 8, no. 1, p. 17030, Nov. 2018. doi: 10.1038/s41598-018-35147-3
|
[72] |
C. Sobin and H A Sackeim, “Psychomotor symptoms of depression,” Am. J. Psychiatry, vol. 154, no. 1, pp. 4–17, Jan. 1997. doi: 10.1176/ajp.154.1.4
|
[73] |
X. Ma, H. Yang, Q. Chen, D. Huang, and Y. Wang, “DepAudioNet: An efficient deep model for audio based depression classification,” in Proc. 6th Int. Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 2016, pp. 35−42.
|
[74] |
X. Zhou, K. Jin, Y. Shang, and G. Guo, “Visually interpretable representation learning for depression recognition from facial images,” IEEE Trans. Affect. Comput., vol. 11, no. 3, pp. 542–552, Jul.–Sept. 2020. doi: 10.1109/TAFFC.2018.2828819
|
[75] |
B. Miao, X. Liu, and T. Zhu, “Automatic mental health identification method based on natural gait pattern,” PsyCh J., vol. 10, no. 3, pp. 453–464, Jun. 2021. doi: 10.1002/pchj.434
|
[76] |
Z. Liu, M. Wu, W. Cao, L. Chen, J. Xu, R. Zhang, M. Zhou, and J. Mao, “A facial expression emotion recognition based human-robot interaction system,” IEEE CAA J. Autom. Sinica, vol. 4, no. 4, pp. 668–676, 2017. doi: 10.1109/JAS.2017.7510622
|
[77] |
S. Thomée, A. Härenstam, and M. Hagberg, “Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults-a prospective cohort study,” BMC Public Health, vol. 11, p. 66, Jan. 2011. doi: 10.1186/1471-2458-11-66
|
[78] |
Z. Huang, J. Epps, D. Joachim, and M. Chen, “Depression detection from short utterances via diverse smartphones in natural environmental conditions,” in Proc. 19th Annu. Conf. Int. Speech Communication Association, Hyderabad, India, 2018, pp. 3393−3397.
|
[79] |
A. Dogrucu, A. Perucic, A. Isaro, D. Ball, E. Toto, E. A. Rundensteiner, E. Agu, R. Davis-Martin, and E. Boudreaux, “Moodable: On feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data,” Smart Health, vol. 17, p. 100118, Jul. 2020. doi: 10.1016/j.smhl.2020.100118
|
[80] |
M. Trotzek, S. Koitka, and C. M. Friedrich, “Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 3, pp. 588–601, Mar. 2020. doi: 10.1109/TKDE.2018.2885515
|
[81] |
S. Park, I. Kim, S. W. Lee, J. Yoo, B. Jeong, and M. Cha, “Manifestation of depression and loneliness on social networks: A case study of young adults on Facebook,” in Proc. 18th ACM Conf. Computer Supported Cooperative Work and Social Computing, Vancouver, Canada, 2015, pp. 557−570.
|
[82] |
X. Yang, R. Mcewen, L. R. Ong, and M. Zihayat, “A big data analytics framework for detecting user-level depression from social networks,” Int. J. Inf. Manage., vol. 54, p. 102141, Oct. 2020.
|
[83] |
X. Kang, F. Ren and Y. Wu, “Exploring latent semantic information for textual emotion recognition in blog articles,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 204–216, Jan. 2018. doi: 10.1109/JAS.2017.7510421
|
[84] |
P. A. Lalousis, S. J. Wood, L. Schmaal, K. Chisholm, S. L. Griffiths, R. L. E. P. Reniers, A. Bertolino, S. Borgwardt, P. Brambilla, J. Kambeitz, R. Lencer, C. Pantelis, S. Ruhrmann, R. K. R. Salokangas, F. Schultze-Lutter, C. Bonivento, D. Dwyer, A. Ferro, T. Haidl, M. Rosen, A. Schmidt, E. Meisenzahl, N. Koutsouleris, R. Upthegrove, and PRONIA Consortium, “Heterogeneity and classification of recent onset psychosis and depression: A multimodal machine learning approach,” Schizophr. Bull., vol. 47, no. 4, pp. 1130–1140, Jul. 2021. doi: 10.1093/schbul/sbaa185
|
[85] |
Y. Meng, W. Speier, M. K. Ong, and C. W. Arnold, “Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression,” IEEE J. Biomed. Health Inf., vol. 25, no. 8, pp. 3121–3129, Aug. 2021. doi: 10.1109/JBHI.2021.3063721
|
[86] |
Y. J. Toenders, A. Kottaram, R. Dinga, C. G. Davey, T. Banaschewski, A. L. W. Bokde, E. B. Quinlan, S. Desrivières, H. Flor, A. Grigis, H. Garavan, P. Gowland, A. Heinz, R. Brühl, J. L. Martinot, M. L. Paillère Martinot, F. Nees, D. P. Orfanos, H. Lemaitre, T. Paus, L. Poustka, S. Hohmann, J. H. Fröhner, M. N. Smolka, H. Walter, R. Whelan, A. Stringaris, B. Van Noort, J. Penttilä, Y. Grimmer, C. Insensee, A. Becker, G. Schumann, L. Schmaal, T. Banaschewski, A. L. W. Bokde, S. Desrivières, H. Flor, A. Grigis, H. Garavan, P. Gowland, A. Heinz, R. Brühl, J. L. Martinot, M. L. Paillère Martinot, F. Nees, D. P. Orfanos, H. Lemaitre, T. Paus, L. Poustka, S. Hohmann, J. H. Fröhner, M. N. Smolka, H. Walter, R. Whelan, and G. Schumann, “Predicting depression onset in young people based on clinical, cognitive, environmental, and neurobiological data,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging, vol. 7, no. 4, pp. 376–384, Apr. 2022.
|
[87] |
L. Yang, H. Sahli, X. Xia, E. Pei, M. C. Oveneke, and D. Jiang, “Hybrid depression classification and estimation from audio video and text information,” in Proc. 7th Annu. Workshop on Audio/Visual Emotion Challenge, Mountain View, USA, 2017, pp. 45−51.
|
[88] |
U. R. Acharya, V. K. Sudarshan, H. Adeli, J. Santhosh, J. E. W. Koh, S. D. Puthankatti, and A. Adeli, “A novel depression diagnosis index using nonlinear features in EEG signals,” Eur. Neurol., vol. 74, no. 1−2, pp. 79–83, Sept. 2015. doi: 10.1159/000438457
|
[89] |
H. Cai, Z. Yuan, Y. Gao, S. Sun, N. Li, F. Tian, H. Xiao, J. Li, Z. Yang, X. Li, Q. Zhao, Z. Liu, Z. Yao, M. Yang, H. Peng, J. Zhu, X. Zhang, G. Gao, F. Zheng, R. Li, Z. Guo, R. Ma, J. Yang, L. Zhang, X. Hu, Y. Li, and B. Hu, “A multi-modal open dataset for mental-disorder analysis,” Sci. Data, vol. 9, no. 1, p. 178, Apr. 2022. doi: 10.1038/s41597-022-01211-x
|
[90] |
S. Hong, W. Du, and Q. Zhao, “Automatic depression discrimination on FNIRS by using FastICA/WPD and SVM,” in Proc. Chinese Intelligent Automation Conf. Intelligent Information Processing, Berlin, Germany, 2015, pp. 257−265.
|
[91] |
M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie, and M. Pantic, “AVEC 2014: 3D dimensional affect and depression recognition challenge,” in Proc. 4th Int. Workshop on Audio/Visual Emotion Challenge, Orlando, USA, 2014, pp. 3−10.
|
[92] |
M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Torres Torres, S. Scherer, G. Stratou, R. Cowie, and M. Pantic, “AVEC 2016: Depression, mood, and emotion recognition workshop and challenge,” in Proc. 6th Int. Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 2016, pp. 3−10.
|
[93] |
F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi, M. Schmitt, S. Alisamir, S. Amiriparian, E.-M. Messner, S. Song, S. Liu, Z. Zhao, A. Mallol-Ragolta, Z. Ren, M. Soleymani, and M. Pantic, “AVEC 2019 workshop and challenge: State-of-mind, detecting depression with AI, and cross-cultural affect recognition,” in Proc. 9th Int. Audio/Visual Emotion Challenge and Workshop, Nice, France, 2019, pp. 3−12.
|
[94] |
Y. Shen, H. Yang, and L. Lin, “Automatic depression detection: An emotional audio-textual corpus and a Gru/Bilstm-based model,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022, pp. 6247−6251.
|
[95] |
A. Yates, A. Cohan, and N. Goharian, “Depression and self-harm risk assessment in online forums,” in Proc. Conf. Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 2968−2978.
|
[96] |
M. Stankevich, V. Isakov, D. Devyatkin, and I. Smirnov, “Feature engineering for depression detection in social media,” in Proc. 7th Int. Conf. Pattern Recognition Applications and Methods, Funchal, Portugal, 2018, pp. 426−431.
|
[97] |
G. Coppersmith, M. Dredze, C. Harman, K. Hollingshead, and M. Mitchell, “CLPsych 2015 shared task: Depression and PTSD on twitter,” in Proc. 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Denver, Colorado, 2015, pp. 31−39.
|
[98] |
Z. Jamil, “Monitoring tweets for depression to detect at-risk users,” M.S. thesis, University of Ottawa, Ottawa, Canada, 2017.
|
[99] |
Y. H. Yuan, B. Li, N. Wang, Q. Ye, Y. Liu, and T. Zhu, “Depression identification from gait spectrum features based on Hilbert-Huang transform,” in Proc. 4th Int. Conf. Human Centered Computing, Mérida, Mexico, 2019, pp. 503−515.
|
[100] |
F. Ringeval, B. Schuller, M. Valstar, R. Cowie, and M. Pantic, “AVEC 2015: The 5th international audio/visual emotion challenge and workshop,” in Proc. 23rd ACM Int. Conf. Multimedia, Brisbane, Australia, 2015, pp. 1335−1336.
|
[101] |
F. Ringeval, B. Schuller, M. Valstar, R. Cowie, H. Kaya, M. Schmitt, S. Amiriparian, N. Cummins, D. Lalanne, A. Michaud, E. Ciftçi, H. Güleç, A. A. Salah, and M. Pantic, “AVEC 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition,” in Proc. Audio/Visual Emotion Challenge and Workshop, Seoul, South Korea, 2018, pp. 3−13.
|
[102] |
J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. DeVault, S. Marsella, D. Traum, S. Rizzo, and L. P. Morency, “The distress analysis interview corpus of human and computer interviews,” in Proc. 9th Int. Conf. Language Resources and Evaluation, Reykjavik, Iceland, 2014, pp. 3123−3128.
|
[103] |
C. H. Wuu, N. Zheng, S. Ardisson, R. Bali, D. Belko, E. Brockmeyer, L. Evans, T. Godisart, H. Ha, X. Huang, A. Hypes, T. Koska, S. Krenn, S. Lombardi, X. Luo, K. McPhail, L. Millerschoen, M. Perdoch, M. Pitts, A. Richard, J. Saragih, J. Saragih, T. Shiratori, T. Simon, M. Stewart, A. Trimble, X. Weng, D. Whitewolf, C. Wu, S.-I. Yu, and Y. Sheikh, “Multiface: A dataset for neural face rendering,” arXiv preprint arXiv: 2207.11243, 2022.
|
[104] |
M. Tlachac, E. Toto, J. Lovering, R. Kayastha, N. Taurich, and E. Rundensteiner, “EMU: Early mental health uncovering framework and dataset,” in Proc. 20th IEEE Int. Conf. Machine Learning and Applications, Pasadena, USA, 2021, pp. 1311−1318.
|
[105] |
S. Alghowinem, R. Goecke, M. Wagner, J. Epps, M. Hyett, G. Parker, and M. Breakspear, “Multimodal depression detection: Fusion analysis of paralinguistic, head pose and eye gaze behaviors,” IEEE Trans. Affect. Comput., vol. 9, no. 4, pp. 478–490, Oct.–Dec. 2018. doi: 10.1109/TAFFC.2016.2634527
|
[106] |
Y. Yang, C. Fairbairn, and J. F. Cohn, “Detecting depression severity from vocal prosody,” IEEE Trans. Affect. Comput., vol. 4, no. 2, pp. 142–150, Apr.–Jun. 2013. doi: 10.1109/T-AFFC.2012.38
|
[107] |
D. Highland and G. Zhou, “A review of detection techniques for depression and bipolar disorder,” Smart Health, vol. 24, p. 100282, Jun. 2022. doi: 10.1016/j.smhl.2022.100282
|
[108] |
Z.-X. Yang and B.-Q. Chen, “An effective sparsity evaluation criterion for power-line interference suppression of EEG signal,” Front. Neurosci., vol. 16, p. 984471, Nov. 2022. doi: 10.3389/fnins.2022.984471
|
[109] |
Y. Sun and X. B. Yu, “Capacitive biopotential measurement for electrophysiological signal acquisition: A review,” IEEE Sens. J., vol. 16, no. 9, pp. 2832–2853, May 2016. doi: 10.1109/JSEN.2016.2519392
|
[110] |
L. Xu, M. J. Rooijakkers, C. Rabotti, J. Peuscher, and M. Mischi, “Use of power-line interference for adaptive motion artifact removal in biopotential measurements,” Physiol. Meas., vol. 37, no. 1, pp. 25–40, Jan. 2016. doi: 10.1088/0967-3334/37/1/25
|
[111] |
S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for supervised leaning,” Int. J. Comput. Sci., vol. 1, no. 1, pp. 111–117, Jan. 2006.
|
[112] |
S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining. Cham, Germany: Springer, 2015.
|
[113] |
X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction of multiple vulnerability characteristics through multi-task learning,” in Proc. 24th Int. Conf. Engineering of Complex Computer Systems, Guangzhou, China, 2019, pp. 31−40.
|
[114] |
M. M. Meskhi, A. Rivolli, R. G. Mantovani, and R, Vilalta, “Learning abstract task representations,” in Proc. AAAI Workshop on Meta-Learning and MetaDL Challenge, 2021, pp. 127−137.
|
[115] |
I. Tavchioski, B. Skrlj, S. Pollak, and B. Koloski, “Early detection of depression with linear models using hand-crafted and contextual features,” Proc. Working Notes of CLEF 2022 – Conf. Labs of the Evaluation Forum, Bologna, Italy, 2022, pp. 5−8.
|
[116] |
J. R. Williamson, T. F. Quatieri, B. S. Helfer, R. Horwitz, B. Yu, and D. D. Mehta, “Vocal biomarkers of depression based on motor incoordination,” in Proc. 3rd ACM Int. Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 2013, pp. 41−48.
|
[117] |
C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, Jun. 1998. doi: 10.1023/A:1009715923555
|
[118] |
A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004. doi: 10.1023/B:STCO.0000035301.49549.88
|
[119] |
L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, Oct. 2001. doi: 10.1023/A:1010933404324
|
[120] |
S. Menard, Applied Logistic Regression Analysis. 2nd ed. SAGE, 2001.
|
[121] |
Y. Kang, X. Jiang, Y. Yin, Y. Shang, and X. Zhou, “Deep transformation learning for depression diagnosis from facial images,” in Proc. 12th Chinese Conf. Biometric Recognition, Shenzhen, China, 2017, pp. 13−22
|
[122] |
A. Salekin, J. W. Eberle, J. J. Glenn, B. A. Teachman, and J. A. Stankovic, “A weakly supervised learning framework for detecting social anxiety and depression,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 2, no. 2, p. 81, Jun. 2018.
|
[123] |
R. Tao, S. N. Ding, J. Chen, X. M. Zhu, Z. J. Ni, L. M. Hu, Y. Zhang, Y. Xu, and H. Q. Sun, “Identifying depressive disorder with sleep electroencephalogram data: A study based on deep learning,” J. Sichuan Univ. Med. Sci., vol. 54, no. 2, pp. 287–292, 2023.
|
[124] |
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998. doi: 10.1109/5.726791
|
[125] |
J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2, pp. 179–211, Mar. 1990. doi: 10.1207/s15516709cog1402_1
|
[126] |
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735
|
[127] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6000−6010.
|
[128] |
J. Jung, C. Kang, J. Yoon, S. Kim, and J. Han, “HiQuE: Hierarchical question embedding network for multimodal depression detection,” in Proc. 33rd ACM Int. Conf. Information and Knowledge Management, Boise, USA, 2024, pp. 1049−1059.
|
[129] |
T. Baltrušaitis, P. Robinson, and L.-P. Morency, “OpenFace: An open source facial behavior analysis toolkit,” in Proc. IEEE Winter Conf. Applications of Computer Vision, Lake Placid, USA, 2016, pp. 1−10.
|
[130] |
W. C. de Melo, E. Granger, and M. B. Lopez, “Encoding temporal information for automatic depression recognition from facial analysis,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 1080−1084.
|
[131] |
X. Li, W. Guo, and H. Yang, “Depression severity prediction from facial expression based on the DRR_DepressionNet network,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Seoul, South Korea, 2020, pp. 2757−2764.
|
[132] |
Y. Zhu, Y. Shang, Z. Shao, and G. Guo, “Automated depression diagnosis based on deep networks to encode facial appearance and dynamics,” IEEE Trans. Affect. Comput., vol. 9, no. 4, pp. 578–584, Oct.-Dec. 2018. doi: 10.1109/TAFFC.2017.2650899
|
[133] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 11, pp. 8778–8790, Nov. 2023. doi: 10.1109/TNNLS.2022.3153039
|
[134] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 69, no. 12, pp. 5169–5173, Dec. 2022.
|
[135] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
|
[136] |
E. Aghajari and A. A. AbdulRahim, “Prediction of short circuit current of wind turbines based on artificial neural network model,” EAI Endorsed Trans. AI Robot., vol. 3, Jul. 2024.
|
[137] |
M. Davari, A. Harooni, A. Nasr, K. Savoji, and M. Soleimani, “Improving recognition accuracy for facial expressions using scattering wavelet,” EAI Endorsed Trans. AI Robot., vol. 3, Mar. 2024.
|
[138] |
A. Gupta, “Improved hybrid preprocessing technique for effective segmentation of wheat canopies in chlorophyll fluorescence images,” EAI Endorsed Trans. AI Robot., vol. 3, Jan. 2024.
|
[139] |
X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. C. Zhou, “Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 402–411, Feb. 2021. doi: 10.1109/JAS.2020.1003396
|
[140] |
X. H. Wen and M. C. Zhou, “Evolution and role of optimizers in training deep learning models,” IEEE/CAA J. Autom Sinica, vol. 11, no. 10, pp. 2039–2042, Oct. 2024. doi: 10.1109/JAS.2024.124806
|
[141] |
W. He, M. Liu, Y. Tang, Q. Liu, and Y. Wang, “Differentiable automatic data augmentation by proximal update for medical image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1315–1318, Jul. 2022. doi: 10.1109/JAS.2022.105701
|
[142] |
X. Jiang and S. Li, “BAS: Beetle antennae search algorithm for optimization problems,” arXiv preprint arXiv: 1710.10724, 2017.
|
[143] |
Y. Zhang, S. Li, and B. Xu, “Convergence analysis of beetle antennae search algorithm and its applications,” Soft Comput., vol. 25, no. 16, pp. 10595–10608, Jul. 2021. doi: 10.1007/s00500-021-05991-z
|
[144] |
Q. Wu, H. Lin, Y. Jin, Z. Chen, S. Li, and D. Chen, “A new fallback beetle antennae search algorithm for path planning of mobile robots with collision-free capability,” Soft Comput., vol. 24, pp. 2369–2380, Feb. 2020. doi: 10.1007/s00500-019-04067-3
|
[145] |
A. H. Khan, X. Cao, S. Li, V. N. Katsikis, and L. Liao, “BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 461–471, Mar. 2020. doi: 10.1109/JAS.2020.1003048
|
[146] |
WHO. Depression. [Online]. Available: https://www.who.int/health-topics/depression#tab=tab_1
|
[147] |
J. R. Hughes and E. R. John, “Conventional and quantitative electroencephalography in psychiatry,” J. Neuropsychiatry Clin. Neurosci., vol. 11, no. 2, pp. 190–208, May 1999. doi: 10.1176/jnp.11.2.190
|
[148] |
P. L. Faris, E. D. Eckert, S. W. Kim, W. H. Meller, J. V. Pardo, R. L. Goodale, and B. K. Hartman, “Evidence for a vagal pathophysiology for bulimia nervosa and the accompanying depressive symptoms,” J. Affect. Disord., vol. 92, no. 1, pp. 79–90, May 2006. doi: 10.1016/j.jad.2005.12.047
|
[149] |
M. R. Islam, M. A. Moni, M. M. Islam, M. Rashed-Al-Mahfuz, M. S. Islam, M. K. Hasan, M. S. Hossain, M. Ahmad, S. Uddin, A. Azad, S. A. Alyami, M. A. R. Ahad, and P. Lió, “Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques,” IEEE Access, vol. 9, pp. 94601–94624, Jun. 2021. doi: 10.1109/ACCESS.2021.3091487
|
[150] |
T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Y. Li, and X. Zhou, “Variational instance-adaptive graph for EEG emotion recognition,” IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 343–356, Jan.–Mar. 2023. doi: 10.1109/TAFFC.2021.3064940
|
[151] |
G. Zhao, Y. Zhang, G. Zhang, D. Zhang, and Y.-J. Liu, “Multi-target positive emotion recognition from EEG signals,” IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 370–381, Jan.–Mar. 2023. doi: 10.1109/TAFFC.2020.3043135
|
[152] |
B. Hosseinifard, M. H. Moradi, and R. Rostami, “Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal,” Comput. Methods Programs Biomed., vol. 109, no. 3, pp. 339–345, Mar. 2013. doi: 10.1016/j.cmpb.2012.10.008
|
[153] |
J. Shen, X. Zhang, G. Wang, Z. Ding, and B. Hu, “An improved empirical mode decomposition of electroencephalogram signals for depression detection,” IEEE Trans. Affect. Comput., vol. 13, no. 1, pp. 262–271, Jan.–Mar. 2022. doi: 10.1109/TAFFC.2019.2934412
|
[154] |
M. Sharma, P. V. Achuth, D. Deb, S. D. Puthankattil, and U. R. Acharya, “An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals,” Cognit. Syst. Res., vol. 52, pp. 508–520, Dec. 2018. doi: 10.1016/j.cogsys.2018.07.010
|
[155] |
H. Cai, Y. Chen, J. Han, X. Zhang, and B. Hu, “Study on feature selection methods for depression detection using three-electrode EEG data,” Interdiscip. Sci. Computat. Life Sci., vol. 10, no. 3, pp. 558–565, May 2018. doi: 10.1007/s12539-018-0292-5
|
[156] |
S. Mahato and S. Paul, “Detection of major depressive disorder using linear and non-linear features from EEG signals,” Microsyst. Technol., vol. 25, no. 3, pp. 1065–1076, May 2019. doi: 10.1007/s00542-018-4075-z
|
[157] |
P. P. Thoduparambil, A. Dominic, and S. M. Varghese, “EEG-based deep learning model for the automatic detection of clinical depression,” Phys. Eng. Sci. Med., vol. 43, no. 4, pp. 1349–1360, Oct. 2020. doi: 10.1007/s13246-020-00938-4
|
[158] |
X. Li, R. La, Y. Wang, J. Niu, S. Zeng, S. Sun, and J. Zhu, “Eeg-based mild depression recognition using convolutional neural network,” Med. Biol. Eng. Comput., vol. 57, no. 6, pp. 1341–1352, Feb. 2019. doi: 10.1007/s11517-019-01959-2
|
[159] |
M. Kang, H. Kwon, J.-H. Park, S. Kang, and Y. Lee, “Deep-asymmetry: Asymmetry matrix image for deep learning method in pre-screening depression,” Sensors, vol. 20, no. 22, p. 6526, Nov. 2020. doi: 10.3390/s20226526
|
[160] |
D. Wang, C. Lei, X. Zhang, H. Wu, S. Zheng, J. Chao, and H. Peng, “Identification of depression with a semi-supervised GCN based on EEG data,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Houston, USA, 2021, pp. 2338−2345.
|
[161] |
A. Saeedi, M. Saeedi, A. Maghsoudi, and A. Shalbaf, “Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach,” Cognit. Neurodyn., vol. 15, no. 2, pp. 239–252, Apr. 2021. doi: 10.1007/s11571-020-09619-0
|
[162] |
G. Rodríguez-Bermúdez and P. J. García-Laencina, “Analysis of EEG signals using nonlinear dynamics and chaos: A review,” Appl. Math. Inf. Sci., vol. 9, no. 5, pp. 2309–2321, Sept. 2015.
|
[163] |
S. A. Akar, S. Kara, S. Agambayev, and V. Bilgiç, “Nonlinear analysis of EEGs of patients with major depression during different emotional states,” Comput. Biol. Med., vol. 67, pp. 49–60, Dec. 2015. doi: 10.1016/j.compbiomed.2015.09.019
|
[164] |
A. Ortiz, K. Bradler, M. Mowete, S. Maclean, J. Garnham, C. Slaney, B. H. Mulsant, and M. Alda, “The futility of long-term predictions in bipolar disorder: Mood fluctuations are the result of deterministic chaotic processes,” Int. J. Bipolar Disord., vol. 9, no. 1, p. 30, Oct. 2021. doi: 10.1186/s40345-021-00235-3
|
[165] |
A. Kustubayeva, M. Zholdassova, G. Matthews, and E. Nelson, “Lyapunov exponent of theta rhythm as a marker of depression during attentional network test,” Biol. Psychiatry, vol. 89, no. 9, p. S164, May 2021.
|
[166] |
G. Chopra, P. Whig, and S. B. K. Adusumilli, “Using machine learning algorithms classified depressed patients and normal people,” Int. J. Mach. Learn. Sustain. Dev., vol. 4, no. 1, pp. 31–40, 2022.
|
[167] |
L. Zhao, L. Yang, Z. Su, and C. Liu, “Cardiorespiratory coupling analysis based on entropy and cross-entropy in distinguishing different depression stages,” Front. Physiol., vol. 10, p. 359, Mar. 2019. doi: 10.3389/fphys.2019.00359
|
[168] |
M. Cukic, D. Pokrajac, M. Stokic, S. Simic, V. Radivojevic, and M. Ljubisavljevic, “EEG machine learning with Higuchi fractal dimension and sample entropy as features for successful detection of depression,” arXiv preprint arXiv: 1803.05985, 2018.
|
[169] |
L. Zhao, L. Yang, B. Li, Z. Su, and C. Liu, “Frontal alpha EEG asymmetry variation of depression patients assessed by entropy measures and Lemple-Ziv complexity,” J. Med. Biol. Eng., vol. 41, no. 2, pp. 146–154, Jan. 2021. doi: 10.1007/s40846-020-00594-9
|
[170] |
Y. Li, B. Hu, X. Zheng, and X. Li, “EEG-based mild depressive detection using differential evolution,” IEEE Access, vol. 7, pp. 7814–7822, Nov. 2018.
|
[171] |
H. Cai, Z. Qu, Z. Li, Y. Zhang, X. Hu, and B. Hu, “Feature-level fusion approaches based on multimodal EEG data for depression recognition,” Inf. Fusion, vol. 59, pp. 127–138, Jul. 2020. doi: 10.1016/j.inffus.2020.01.008
|
[172] |
O. Faust, P. C. A. Ang, S. D. Puthankattil, and P. K. Joseph, “Depression diagnosis support system based on EEG signal entropies,” J Mech Med Biol, vol. 14, no. 3, p. 1450035, Jun. 2014. doi: 10.1142/S0219519414500353
|
[173] |
W. Mumtaz, S. S. A. Ali, M. A. M. Yasin, and A. S. Malik, “A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD),” Med. Biol. Eng. Comput., vol. 56, no. 2, pp. 233–246, Feb. 2018. doi: 10.1007/s11517-017-1685-z
|
[174] |
M. Bachmann, L. Päeske, K. Kalev, K. Aarma, A. Lehtmets, P. ööpik, J. Lass, and H. Hinrikus, “Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis,” Comput. Methods Programs Biomed., vol. 155, pp. 11–17, Mar. 2018. doi: 10.1016/j.cmpb.2017.11.023
|
[175] |
Z. Wan, J. Huang, H. Zhang, H. Zhou, J. Yang, and N. Zhong, “HybridEEGNet: A convolutional neural network for EEG feature learning and depression discrimination,” IEEE Access, vol. 8, pp. 30332–30342, Feb. 2020. doi: 10.1109/ACCESS.2020.2971656
|
[176] |
A. Saeedi, A. Maghsoudi, and F. N. Rahatabad, “Depression diagnosis and drug response prediction via recurrent neural networks and transformers utilizing EEG signals,” arXiv preprint arXiv: 2303.06033, 2023.
|
[177] |
X. Sun, C. Ma, P. Chen, M. Li, H. Wang, W. Dang, C. Mu, and Z. Gao, “A novel complex network-based graph convolutional network in major depressive disorder detection,” IEEE Trans. Instrum. Meas., vol. 71, p. 2519408, Oct. 2022.
|
[178] |
H. Wu and J. Liu, “A multi-stream deep learning model for EEG-based depression identification,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Las Vegas, USA, 2022, pp. 2029−2034.
|
[179] |
H. Wu, J. Liu, and Y. Zhao, “EEG-based depression identification using a deep learning model,” in Proc. 6th Conf. Information and Communication Technology, Gwalior, India, 2022, pp. 1−5.
|
[180] |
B. M. Appelhans and L. J. Luecken, “Heart rate variability as an index of regulated emotional responding,” Rev. Gen. Psychol., vol. 10, no. 3, pp. 229–240, Sept. 2006. doi: 10.1037/1089-2680.10.3.229
|
[181] |
M. Malik, J. T. Bigger, A. J. Camm, R. E. Kleiger, A. Malliani, A. J. Moss, and P. J. Schwartz, “Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. task force of the European society of cardiology and the north American society of pacing and electrophysiology,” Eur. Heart J., vol. 17, no. 3, pp. 354–381, Mar. 1996. doi: 10.1093/oxfordjournals.eurheartj.a014868
|
[182] |
V. K. Jandackova, A. Britton, M. Malik, and A. Steptoe, “Heart rate variability and depressive symptoms: A cross-lagged analysis over a 10-year period in the whitehall II study,” Psychol. Med., vol. 46, no. 10, pp. 2121–2131, May 2016. doi: 10.1017/S003329171600060X
|
[183] |
B. Ay, O. Yildirim, M. Talo, U. B. Baloglu, G. Aydin, S. D. Puthankattil, and U. R. Acharya, “Automated depression detection using deep representation and sequence learning with EEG signals,” J. Med. Syst., vol. 43, no. 7, p. 205, May 2019. doi: 10.1007/s10916-019-1345-y
|
[184] |
Z. Zhang, Q. Meng, L. C. Jin, H. Wang, and H. Hou, “A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism,” Expert Syst. Appl., vol. 239, p. 122356, Apr. 2024. doi: 10.1016/j.eswa.2023.122356
|
[185] |
Z. Wang, C. Hu, W. Liu, X. Zhou, and X. Zhao, “EEG-based high-performance depression state recognition,” Front. Neurosci., vol. 17, p. 1301214, Jan. 2024. doi: 10.3389/fnins.2023.1301214
|
[186] |
S. Byun, A. Y. Kim, E. H. Jang, S. Kim, K. W. Choi, H. Y. Yu, and H. J. Jeon, “Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol,” Comput. Biol. Med., vol. 112, p. 103381, Sept. 2019. doi: 10.1016/j.compbiomed.2019.103381
|
[187] |
F. Zhang, M. Wang, J. Qin, Y. Zhao, X. Sun, and W. Wen, “Depression recognition based on electrocardiogram,” in Proc. 8th Int. Conf. Computer and Communication Systems, Guangzhou, China, 2023, pp. 1−5.
|
[188] |
T. Roh, S. Hong, and H. J. Yoo, “Wearable depression monitoring system with heart-rate variability,” in Proc. 36th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014, pp. 562−565.
|
[189] |
T. Matsui, K. Kakisaka, and T. Shinba, “Impaired parasympathetic augmentation under relaxation in patients with depression as assessed by a novel non-contact microwave radar system,” J. Med. Eng. Technol., vol. 40, no. 1, pp. 15–19, 2016. doi: 10.3109/03091902.2015.1116632
|
[190] |
G. Sun, T. Shinba, T. Kirimoto, and T. Matsui, “An objective screening method for major depressive disorder using logistic regression analysis of heart rate variability data obtained in a mental task paradigm,” Front. Psychiatry, vol. 7, p. 180, Nov. 2016.
|
[191] |
D. Kuang, R. Yang, X. Chen, G. Lao, F. Wu, X. Huang, R. Lv, L. Zhang, C. Song, and S. Ou, “Depression recognition according to heart rate variability using Bayesian networks,” J. Psychiatric Res., vol. 95, pp. 282–287, Dec. 2017. doi: 10.1016/j.jpsychires.2017.09.012
|
[192] |
S. T. Noor, S. T. Asad, M. M. Khan, G. S. Gaba, J. F. Al-Amri, and M. Masud, “Predicting the risk of depression based on ECG using RNN,” Comput. Intell. Neurosci., vol. 2021, p. 1299870, Jul. 2021. doi: 10.1155/2021/1299870
|
[193] |
X. Zang, B. Li, L. Zhao, D. Yan, and L. Yang, “End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal,” J. Med. Biol. Eng., vol. 42, no. 2, pp. 225–233, Feb. 2022. doi: 10.1007/s40846-022-00687-7
|
[194] |
S. Mohanraj, S. Balasubramaniyam, V. Kannan, and D. Jeeva, “A deep convolution neural network framework for detecting depression,” in Proc. 6th Int. Conf. Intelligent Computing and Control Systems, Madurai, India, 2022, pp. 1061−1068.
|
[195] |
R. Hudson, W. Rushlow, and S. R. Laviolette, “Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: Implications for neuropsychiatric pathology,” Psychopharmacology, vol. 235, no. 2, pp. 447–458, Feb. 2018. doi: 10.1007/s00213-017-4766-7
|
[196] |
J. Jiang, C. Tang, J. Ren, C. Zhang, L. Dong, and Z. Zhu, “Effect of multiple neonatal sevoflurane exposures on hippocampal apolipoprotein e levels and learning and memory abilities,” Pediatr. Neonatol., vol. 59, no. 2, pp. 154–160, Apr. 2018. doi: 10.1016/j.pedneo.2017.08.007
|
[197] |
M. A. O. Santos, L. S. Bezerra, A. R. M. R. Carvalho, and A. M. Brainer-Lima, “Global hippocampal atrophy in major depressive disorder: A meta-analysis of magnetic resonance imaging studies,” Trends Psychiatry Psychother., vol. 40, no. 4, pp. 369–378, Oct.–Dec. 2018. doi: 10.1590/2237-6089-2017-0130
|
[198] |
P. Chagué, B. Marro, S. Fadili, M. Houot, A. Morin, J. Samper-González, P. Beunon, L. Arrivé, D. Dormont, B. Dubois, M. Teichmann, S. Epelbaum, and O. Colliot, “Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps,” J. Neuroradiol., vol. 48, no. 6, pp. 412–418, Nov. 2021. doi: 10.1016/j.neurad.2020.04.004
|
[199] |
M. Mousavian, J. Chen, and S. Greening, “Depression detection using feature extraction and deep learning from sMRI images,” in Proc. 18th IEEE Int. Conf. Machine Learning and Applications, Boca Raton, USA, 2019, pp. 1731−1736.
|
[200] |
J.-X. Zheng, Y.-C. Chen, H. Chen, L. Jiang, F. Bo, Y. Feng, W.-W. Tang, X. Yin, and J.-P. Gu, “Disrupted spontaneous neural activity related to cognitive impairment in postpartum women,” Front. Psychol., vol. 9, p. 624, May 2018. doi: 10.3389/fpsyg.2018.00624
|
[201] |
J. Zhao, J. Huang, D. Zhi, W. Yan, X. Ma, X. Yang, X. Li, Q. Ke, T. Jiang, V. D. Calhoun, and J. Sui, “Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders,” J. Neurosci. Methods, vol. 341, p. 108756, Jul. 2020. doi: 10.1016/j.jneumeth.2020.108756
|
[202] |
P. C. Mulders, P. F. van Eijndhoven, A. H. Schene, C. F. Beckmann, and I. Tendolkar, “Resting-state functional connectivity in major depressive disorder: A review,” Neurosci. Biobehav. Rev., vol. 56, pp. 330–344, Sept. 2015. doi: 10.1016/j.neubiorev.2015.07.014
|
[203] |
Y. Shimizu, J. Yoshimoto, S. Toki, M. Takamura, S. Yoshimura, Y. Okamoto, S. Yamawaki, and K. Doya, “Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO,” PLoS One, vol. 10, no. 5, p. e0123524, May 2015. doi: 10.1371/journal.pone.0123524
|
[204] |
A. Yamashita, Y. Sakai, T. Yamada, N. Yahata, A. Kunimatsu, N. Okada, T. Itahashi, R. Hashimoto, H. Mizuta, N. Ichikawa, M. Takamura, G. Okada, H. Yamagata, K. Harada, K. Matsuo, S. C. Tanaka, M. Kawato, K. Kasai, N. Kato, H. Takahashi, Y. Okamoto, O. Yamashita, and H. Imamizu, “Generalizable brain network markers of major depressive disorder across multiple imaging sites,” PLoS Biol., vol. 18, no. 12, p. e3000966, Dec. 2020. doi: 10.1371/journal.pbio.3000966
|
[205] |
J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, “Distributed and overlapping representations of faces and objects in ventral temporal cortex,” Science, vol. 293, no. 5539, pp. 2425–2430, Sept. 2001. doi: 10.1126/science.1063736
|
[206] |
B. Yan, X. Xu, M. Liu, K. Zheng, J. Liu, J. Li, L. Wei, B. Zhang, H. Lu, and B. Li, “Quantitative identification of major depression based on resting-state dynamic functional connectivity: A machine learning approach,” Front. Neurosci., vol. 14, p. 191, Mar. 2020. doi: 10.3389/fnins.2020.00191
|
[207] |
X. Wang, Y. Ren, and W. Zhang, “Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features,” Comput. Math. Methods Med., vol. 2017, p. 3609821, Apr. 2017.
|
[208] |
R. Bhaumik, L. M. Jenkins, J. R. Gowins, R. H. Jacobs, A. Barba, D. K. Bhaumik, and S. A. Langenecker, “Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity,” NeuroImage Clin., vol. 16, pp. 390–398, 2017. doi: 10.1016/j.nicl.2016.02.018
|
[209] |
A. Lord, D. Horn, M. Breakspear, and M. Walter, “Changes in community structure of resting state functional connectivity in unipolar depression,” PLoS One, vol. 7, no. 8, p. e41282, Aug. 2012. doi: 10.1371/journal.pone.0041282
|
[210] |
G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in Proc. 21st Int. Conf. Artificial Neural Networks, Espoo, Finland, 2011, pp. 44−51.
|
[211] |
R. Gui, T. Chen, and H. Nie, “The impact of emotional music on active ROI in patients with depression based on deep learning: A task-state fMRI study,” Comput. Intell. Neurosci., vol. 2019, p. 5850830, Oct. 2019.
|
[212] |
D. Yao, M. Liu, M. Wang, C. Lian, J. Wei, L. Sun, J. Sui, and D. Shen, “Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI,” in Proc. 1st Int. Workshop on Graph Learning in Medical Imaging, Shenzhen, China, 2019, pp. 70−78.
|
[213] |
S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueckert, “Metric learning with spectral graph convolutions on brain connectivity networks,” NeuroImage, vol. 169, pp. 431–442, Apr. 2018. doi: 10.1016/j.neuroimage.2017.12.052
|
[214] |
E. Jun, K. S. Na, W. Kang, J. Lee, H. I. Suk, and B. J. Ham, “Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks,” Hum. Brain Mapp., vol. 41, no. 17, pp. 4997–5014, Dec. 2020. doi: 10.1002/hbm.25175
|
[215] |
Q. Wang, L. Qiao, and M. Liu, “Function MRI representation learning via self-supervised transformer for automated brain disorder analysis,” in Proc. 13th Int. Workshop on Machine Learning in Medical Imaging, Singapore, Singapore, 2022, pp. 1−10.
|
[216] |
Y. Cheng, T. Liao, and N. Jia, “Classification algorithms for brain magnetic resonance imaging images of patients with end-stage renal disease and depression,” Contrast Media Mol. Imaging, vol. 2022, p. 4795307, Jul. 2022. doi: 10.1155/2022/4795307
|
[217] |
T. Ma, H. Lyu, J. Liu, Y. Xia, C. Qian, J. Evans, W. Xu, J. Hu, S. Hu, and S. He, “Distinguishing bipolar depression from major depressive disorder using fNIRS and deep neural network,” Prog. Electromagn. Res., vol. 169, pp. 73–86, Dec. 2020. doi: 10.2528/PIER20102202
|
[218] |
Y. Zhu, J. K. Jayagopal, R. K. Mehta, M. Erraguntla, J. Nuamah, A. D. Mcdonald, H. Taylor, and S. H. Chang, “Classifying major depressive disorder using fNIRS during motor rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 4, pp. 961–969, Apr. 2020. doi: 10.1109/TNSRE.2020.2972270
|
[219] |
L. Fu, D. Xiang, J. Xiao, L. Yao, Y. Wang, L. Xiao, H. Wang, G. Wang, and Z. Liu, “Reduced prefrontal activation during the tower of London and verbal fluency task in patients with bipolar depression: A multi-channel NIRS study,” Front. Psychiatry, vol. 9, p. 214, May 2018.
|
[220] |
M. Kawano, T. Kanazawa, H. Kikuyama, A. Tsutsumi, S. Kinoshita, Y. Kawabata, S. Yamauchi, H. Uenishi, S. Kawashige, S. Imazu, K. Toyoda, Y. Nishizawa, M. Takahashi, T. Okayama, W. Odo, K. Ide, S. Maruyama, S. Tarutani, J. Koh, and H. Yoneda, “Correlation between frontal lobe oxy-hemoglobin and severity of depression assessed using near-infrared spectroscopy,” J. Affect. Disord., vol. 205, pp. 154–158, Nov. 2016. doi: 10.1016/j.jad.2016.07.013
|
[221] |
A. Manelis, T. J. Huppert, E. Rodgers, H. A. Swartz, and M. L. Phillips, “The role of the right prefrontal cortex in recognition of facial emotional expressions in depressed individuals: FNIRS study,” J. Affect. Disord., vol. 258, pp. 151–158, Nov. 2019. doi: 10.1016/j.jad.2019.08.006
|
[222] |
L. Gu, L. Huang, F. Yin, and Y. Cheng, “Classification of depressive disorder based on RS-fMRI using multivariate pattern analysis with multiple features,” in Proc. 4th IAPR Asian Conf. Pattern Recognition, Nanjing, China, 2017, pp. 61−66.
|
[223] |
L.-L. Zeng, H. Shen, L. Liu, and D. Hu, “Unsupervised classification of major depression using functional connectivity MRI,” Hum. Brain Mapp., vol. 35, no. 4, pp. 1630–1641, Apr. 2014. doi: 10.1002/hbm.22278
|
[224] |
M. Mousavian, J. Chen, Z. Traylor, and S. Greening, “Depression detection from sMRI and rs-fMRI images using machine learning,” J. Intell. Inf. Syst., vol. 57, no. 2, pp. 395–418, Aug. 2021. doi: 10.1007/s10844-021-00653-w
|
[225] |
M. Patil, P. Mukherji, and V. Wadhai, “A novel hybrid optimization algorithm for depression detection using MRI and speech signal,” Biomed. Signal Process. Control, vol. 86, p. 105046, Sept. 2023. doi: 10.1016/j.bspc.2023.105046
|
[226] |
Y. Fang, M. Wang, G. G. Potter, and M. Liu, “Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification,” Med. Image Anal., vol. 84, p. 102707, Feb. 2023. doi: 10.1016/j.media.2022.102707
|
[227] |
Y. Zhang, B. Li, X. Li, Y. Huang, and H. Ding, “Wavelet-enhanced CNN for depression classification based on MRI images,” in Proc. IEEE Int. Conf. Image Processing, Abu Dhabi, United Arab Emirates, 2024, pp. 3117−3123.
|
[228] |
H. Song, W. Du, X. Yu, W. Dong, W. Quan, W. Dang, H. Zhang, J. Tian, and T. Zhou, “Automatic depression discrimination on FNIRS by using general linear model and SVM,” in Proc. 7th Int. Conf. Biomedical Engineering and Informatics, Dalian, China, 2014, pp. 278−282.
|
[229] |
Y. Zhu and M. S. R. K. Mehta, “Machine learning approach on frontal lobe activity to assess depression in adults: Implications for rehabilitation outcomes,” in Proc. Int. Symp. Wearable Robotics and Rehabilitation, Houston, USA, 2017, pp. 1−2.
|
[230] |
Q. Yu, R. Wang, J. Liu, L. Hu, M. Chen, and Z. Liu, “GNN-based depression recognition using spatio-temporal information: A fNIRS study,” IEEE J. Biomed. Health Inf., vol. 26, no. 10, pp. 4925–4935, Oct. 2022. doi: 10.1109/JBHI.2022.3195066
|
[231] |
J. Chao, S. Zheng, H. Wu, D. Wang, X. Zhang, H. Peng, and B. Hu, “fNIRS evidence for distinguishing patients with major depression and healthy controls,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 2211–2221, Sept. 2021. doi: 10.1109/TNSRE.2021.3115266
|
[232] |
K. Shao, Y. Liu, Y. Mo, Q. Yang, Y. Hao, and M. Chen, “fNIRS-driven depression recognition based on cross-modal data augmentation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 32, pp. 2688–2698, Jul. 2024. doi: 10.1109/TNSRE.2024.3429337
|
[233] |
X. Wang, Y. Wang, M. Zhou, B. Li, X. Liu, and T. Zhu, “Identifying psychological symptoms based on facial movements,” Front. Psychiatry, vol. 11, p. 607890, Dec. 2020. doi: 10.3389/fpsyt.2020.607890
|
[234] |
J. M. Girard, J. F. Cohn, M. H. Mahoor, S. Mavadati, and D. P. Rosenwald, “Social risk and depression: Evidence from manual and automatic facial expression analysis,” in Proc. 10th IEEE Int. Conf. Workshops on Autom. Face and Gesture Recognition, Shanghai, China, 2013, pp. 1−8.
|
[235] |
J. Li, Z. Liu, Z. Ding, and G. Wang, “A novel study for MDD detection through task-elicited facial cues,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Madrid, Spain, 2018, pp. 1003−1008.
|
[236] |
A. Mulay, A. Dhekne, R. Wani, S. Kadam, P. Deshpande, and P. Deshpande, “Automatic depression level detection through visual input,” in Proc. 4th World Conf. Smart Trends in Systems, Security and Sustainability, London, UK, 2020, pp. 19−22.
|
[237] |
J. Rottenberg, J. J. Gross, and I. H. Gotlib, “Emotion context insensitivity in major depressive disorder,” J. Abnorm. Psychol., vol. 114, no. 4, pp. 627–639, Nov. 2005. doi: 10.1037/0021-843X.114.4.627
|
[238] |
L. M. Bylsma, B. H. Morris, and J. Rottenberg, “A meta-analysis of emotional reactivity in major depressive disorder,” Clin. Psychol. Rev., vol. 28, no. 4, pp. 676–691, Apr. 2008. doi: 10.1016/j.cpr.2007.10.001
|
[239] |
A. Pampouchidou, O. Simantiraki, C. M. Vazakopoulou, C. Chatzaki, M. Pediaditis, A. Maridaki, K. Marias, P. Simos, F. Yang, F. Meriaudeau, and M. Tsiknakis, “Facial geometry and speech analysis for depression detection,” in Proc. 39th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Jeju, South Korea, 2017, pp. 1433−1436.
|
[240] |
S. Alghowinem, R. Goecke, M. Wagner, G. Parkerx, and M. Breakspear, “Head pose and movement analysis as an indicator of depression,” in Proc. Humaine Association Conf. Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2013, pp. 283−288.
|
[241] |
H. Meng, D. Huang, H. Wang, H. Yang, M. AI-Shuraifi, and Y. Wang, “Depression recognition based on dynamic facial and vocal expression features using partial least square regression,” in Proc. 3rd ACM Int. Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 2013, pp. 21−30.
|
[242] |
S. Alghowinem, R. Goecke, M. Wagner, G. Parker, and M. Breakspear, “Eye movement analysis for depression detection,” in Proc. IEEE Int. Conf. Image Processing, Melbourne, Australia, 2013, pp. 4220−4224.
|
[243] |
J. F. Cohn, T. S. Kruez, I. Matthews, Y. Yang, M. H. Nguyen, M. T. Padilla, F. Zhou, and F. De La Torre, “Detecting depression from facial actions and vocal prosody,” in Proc. 3rd Int. Conf. Affective Computing and Intelligent Interaction and Workshops, Amsterdam, Netherlands, 2009, pp. 1−7.
|
[244] |
A. Jan, H. Meng, Y. F. A. Gaus, F. Zhang, and S. Turabzadeh, “Automatic depression scale prediction using facial expression dynamics and regression,” in Proc. 4th Int. Workshop on Audio/Visual Emotion Challenge, Orlando, USA, 2014, pp. 73−80.
|
[245] |
A. Pampouchidou, O. Simantiraki, A. Fazlollahi, M. Pediaditis, D. Manousos, A. Roniotis, G. Giannakakis, F. Meriaudeau, P. Simos, K. Marias, F. Yang, and M. Tsiknakis, “Depression assessment by fusing high and low level features from audio, video, and text,” in Proc. 6th Int. Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 2016, pp. 27−34.
|
[246] |
W. Guo, H. Yang, Z. Liu, Y. Xu, and B. Hu, “Deep neural networks for depression recognition based on 2d and 3d facial expressions under emotional stimulus tasks,” Front. Neurosci., vol. 15, p. 609760, Apr. 2021. doi: 10.3389/fnins.2021.609760
|
[247] |
A. Pampouchidou, K. Marias, M. Tsiknakis, P. Simos, F. Yang, G. Lemaître, and F. Meriaudeau, “Video-based depression detection using local curvelet binary patterns in pairwise orthogonal planes,” in Proc. 38th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Orlando, USA, 2016, pp. 3835−3838.
|
[248] |
N. Cummins, J. Joshi, A. Dhall, V. Sethu, R. Goecke, and J. Epps, “Diagnosis of depression by behavioural signals: A multimodal approach,” in Proc. 3rd ACM Int. Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 2013, pp. 11−20.
|
[249] |
M. Nasir, A. Jati, P. G. Shivakumar, S. N. Chakravarthula, and P. Georgiou, “Multimodal and multiresolution depression detection from speech and facial landmark features,” in Proc. 6th Int. Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 2016, pp. 43−50.
|
[250] |
F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: The Munich versatile and fast open-source audio feature extractor,” in Proc. 18th ACM Int. Conf. Multimedia, Firenze, Italy, 2010, pp. 1459−1462.
|
[251] |
G. Littlewort, J. Whitehill, T. Wu, I. Fasel, M. Frank, J. Movellan, and M. Bartlett, “The computer expression recognition toolbox (CERT),” in Proc. IEEE Int. Conf. Autom. Face and Gesture Recognition, Santa Barbara, USA, 2011, pp. 298−305.
|
[252] |
M. Al Jazaery and G. Guo, “Video-based depression level analysis by encoding deep spatiotemporal features,” IEEE Trans. Affect. Comput., vol. 12, no. 1, pp. 262–268, Jan.–Mar. 2021. doi: 10.1109/TAFFC.2018.2870884
|
[253] |
W. C. de Melo, E. Granger, and A. Hadid, “Depression detection based on deep distribution learning,” in Proc. IEEE Int. Conf. Image Processing, Taipei, China, 2019, pp. 4544−4548.
|
[254] |
X. Zhou, P. Huang, H. Liu, and S. Niu, “Learning content-adaptive feature pooling for facial depression recognition in videos,” Electron. Lett., vol. 55, no. 11, pp. 648–650, May 2019. doi: 10.1049/el.2019.0443
|
[255] |
L. Chao, J. Tao, M. Yang, and Y. Li, “Multi task sequence learning for depression scale prediction from video,” in Proc. Int. Conf. Affective Computing and Intelligent Interaction, Xi’an, China, 2015, pp. 526−531.
|
[256] |
A. Jan, H. Meng, Y. F. B. A. Gaus, and F. Zhang, “Artificial intelligent system for automatic depression level analysis through visual and vocal expressions,” IEEE Trans. Cognit. Dev. Syst., vol. 10, no. 3, pp. 668–680, Sept. 2018. doi: 10.1109/TCDS.2017.2721552
|
[257] |
W. C. de Melo, E. Granger, and A. Hadid, “A deep multiscale spatiotemporal network for assessing depression from facial dynamics,” IEEE Trans. Affect. Comput., vol. 13, no. 3, pp. 1581–1592, Jul.–Sept. 2022. doi: 10.1109/TAFFC.2020.3021755
|
[258] |
G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006. doi: 10.1162/neco.2006.18.7.1527
|
[259] |
R. Flores, M. L. Tlachac, A. Shrestha, and E. Rundensteiner, “Temporal facial features for depression screening,” in Proc. ACM Int. Joint Conf. Pervasive and Ubiquitous Computing and ACM Int. Symp. Wearable Computers, Cambridge, UK, 2022, pp. 488−493.
|
[260] |
H. Kaya and A. Ali Salah, “Eyes whisper depression: A CCA based multimodal approach,” in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, USA, 2014, pp. 961−964.
|
[261] |
L. Wen, X. Li, G. Guo, and Y. Zhu, “Automated depression diagnosis based on facial dynamic analysis and sparse coding,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 7, pp. 1432–1441, Jul. 2015. doi: 10.1109/TIFS.2015.2414392
|
[262] |
A. Ray, S. Kumar, R. Reddy, P. Mukherjee, and R. Garg, “Multi-level attention network using text, audio and video for depression prediction,” in Proc. 9th Int. Audio/Visual Emotion Challenge and Workshop, Nice, France, 2019, pp. 81−88.
|
[263] |
Y. Wang, J. Ma, B. Hao, P. Hu, X. Wang, J. Mei, and S. Li, “Automatic depression detection via facial expressions using multiple instance learning,” in Proc. 17th Int. Symp. Biomedical Imaging, Iowa City, USA, 2020, pp. 1933−1936.
|
[264] |
Y. Pan, Y. Shang, T. Liu, Z. Shao, G. Guo, H. Ding, and Q. Hu, “Spatial-temporal attention network for depression recognition from facial videos,” Expert Syst. Appl., vol. 237, p. 121410, Mar. 2024. doi: 10.1016/j.eswa.2023.121410
|
[265] |
Z. Liu, X. Yuan, Y. Li, Z. Shangguan, L. Zhou, and B. Hu, “PRA-Net: Part-and-relation attention network for depression recognition from facial expression,” Comput. Biol. Med., vol. 157, p. 106589, May 2023. doi: 10.1016/j.compbiomed.2023.106589
|
[266] |
S. Zhang, X. Zhang, X. Zhao, J. Fang, M. Niu, Z. Zhao, J. Yu, and Q. Tian, “MTDAN: A lightweight multi-scale temporal difference attention networks for automated video depression detection,” IEEE Trans. Affect. Comput., vol. 15, no. 3, pp. 1078–1089, Jul.–Sept. 2024. doi: 10.1109/TAFFC.2023.3312263
|
[267] |
S. A. Montgomery and M. Åsberg, “A new depression scale designed to be sensitive to change,” Br. J. Psychiatry, vol. 134, no. 4, pp. 382–389, Apr. 1979. doi: 10.1192/bjp.134.4.382
|
[268] |
M. Asgari, I. Shafran, and L. B. Sheeber, “Inferring clinical depression from speech and spoken utterances,” in Proc. IEEE Int. Workshop on Machine Learning for Signal Processing, Reims, France, 2014, pp. 1−5.
|
[269] |
E. W. McGinnis, S. P. Anderau, J. Hruschak, R. D. Gurchiek, N. L. Lopez-Duran, K. Fitzgerald, K. L. Rosenblum, M. Muzik, and R. S. Mcginnis, “Giving voice to vulnerable children: Machine learning analysis of speech detects anxiety and depression in early childhood,” IEEE J. Biomed. Health Inf., vol. 23, no. 6, pp. 2294–2301, Nov. 2019. doi: 10.1109/JBHI.2019.2913590
|
[270] |
P. Wu, R. Wang, H. Lin, F. Zhang, J. Tu, and M. Sun, “Automatic depression recognition by intelligent speech signal processing: A systematic survey,” CAAI Trans. Intell. Technol., vol. 8, no. 3, pp. 701–711, Sept. 2023. doi: 10.1049/cit2.12113
|
[271] |
M. L. Tlachac, R. Flores, E. Toto, and E. Rundensteiner, “Early mental health uncovering with short scripted and unscripted voice recordings,” in Deep Learning Applications, Volume 4, M. A. Wani and V. Palade, Eds. Singapore, Singapore: Springer, 2023, pp. 79−110.
|
[272] |
M. R. Makiuchi, T. Warnita, K. Uto, and K. Shinoda, “Multimodal fusion of BERT-CNN and gated CNN representations for depression detection,” in Proc. 9th Int. Audio/Visual Emotion Challenge and Workshop, Nice, France, 2019, pp. 55−63.
|
[273] |
R. Flores, M. Tlachac, E. Toto, and E. A. Rundensteiner, “Depression screening using deep learning on follow-up questions in clinical interviews,” in Proc. 20th IEEE Int. Conf. Machine Learning and Applications, Pasadena, USA, 2021, pp. 595−600.
|
[274] |
K. Takakusaki, “Neurophysiology of gait: From the spinal cord to the frontal lobe,” Mov. Disord., vol. 28, no. 11, pp. 1483–1491, Sept. 2013. doi: 10.1002/mds.25669
|
[275] |
P. L. Sheridan and J. M. Hausdorff, “The role of higher-level cognitive function in gait: Executive dysfunction contributes to fall risk in Alzheimer’s disease,” Dementia Geriatr. Cognit. Disord., vol. 24, no. 2, pp. 125–137, Jul. 2007. doi: 10.1159/000105126
|
[276] |
L. Sloman, M. Pierrynowski, M. Berridge, S. Tupling, and J. Flowers, “Mood, depressive illness and gait patterns,” Can. J. Psychiatry, vol. 32, no. 3, pp. 190–193, Apr. 1987. doi: 10.1177/070674378703200306
|
[277] |
T. C. Brandler, C. Wang, M. Oh-Park, R. Holtzer, and J. Verghese, “Depressive symptoms and gait dysfunction in the elderly,” Am. J. Geriatr. Psychiatry, vol. 20, no. 5, pp. 425–432, May 2012. doi: 10.1097/JGP.0b013e31821181c6
|
[278] |
M. B. Van Iersel, A. Haitsma, M. G. M. Olde Rikkert, and C. E. M. Benraad, “Quantitative gait analysis to detect gait disorders in geriatric patients with depression,” J. Am. Geriatr. Soc., vol. 53, no. 8, pp. 1441–1442, Aug. 2005. doi: 10.1111/j.1532-5415.2005.53433_4.x
|
[279] |
J. Michalak, N. F. Troje, and T. Heidenreich, “The effects of mindfulness-based cognitive therapy on depressive gait patterns,” J. Cognit. Behav. Psychother., vol. 11, no. 1, pp. 13–27, Mar. 2011.
|
[280] |
S. Radovanović, M. Jovičić, N. P. Marić, and V. Kostić, “Gait characteristics in patients with major depression performing cognitive and motor tasks while walking,” Psychiatry Res., vol. 217, no. 1−2, pp. 39–46, Jun. 2014. doi: 10.1016/j.psychres.2014.02.001
|
[281] |
A. S. Naidu, A. Vasudev, A. M. Burhan, E. Ionson, and M. Montero-Odasso, “Does dual-task gait differ in those with late-life depression versus mild cognitive impairment?,” Am. J. Geriatr. Psychiatry, vol. 27, no. 1, pp. 62–72, Jan. 2019. doi: 10.1016/j.jagp.2018.10.011
|
[282] |
J. Michalak, N. F. Troje, J. Fischer, P. Vollmar, T. Heidenreich, and D. Schulte, “Embodiment of sadness and depression-gait patterns associated with dysphoric mood,” Psychosom. Med., vol. 71, no. 5, pp. 580–587, Jun. 2009. doi: 10.1097/PSY.0b013e3181a2515c
|
[283] |
M. R. Lemke, T. Wendorff, B. Mieth, K. Buhl, and M. Linnemann, “Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls,” J. Psychiatr. Res., vol. 34, no. 4−5, pp. 277–283, Jul. 2000. doi: 10.1016/S0022-3956(00)00017-0
|
[284] |
S. Xu, J. Fang, X. Hu, E. Ngai, W. Wang, Y. Guo, and V. C. M. Leung, “Emotion recognition from gait analyses: Current research and future directions,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 1, pp. 363–377, Feb. 2024. doi: 10.1109/TCSS.2022.3223251
|
[285] |
F. Gholami, D. A. Trojan, J. Kovecses, W. M. Haddad, and B. Gholami, “A Microsoft Kinect-based point-of-care gait assessment framework for multiple sclerosis patients,” IEEE J. Biomed. Health Inform., vol. 21, no. 5, pp. 1376–1385, Sept. 2017. doi: 10.1109/JBHI.2016.2593692
|
[286] |
M. D. Jan Nordin and A. Saadoon, “A survey of gait recognition based on skeleton model for human identification,” Res. J. Appl. Sci. Eng. Technol., vol. 12, no. 7, pp. 756–763, Apr. 2016. doi: 10.19026/rjaset.12.2751
|
[287] |
Y. Wang, J. Sun, J. Li, and D. Zhao, “Gait recognition based on 3D skeleton joints captured by kinect,” in Proc. IEEE Int. Conf. Image Processing, Phoenix, USA, 2016, pp. 3151−3155.
|
[288] |
J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 316–322, Feb. 2006. doi: 10.1109/TPAMI.2006.38
|
[289] |
X. Yang, Y. Zhou, T. Zhang, G. Shu, and J. Yang, “Gait recognition based on dynamic region analysis,” Signal Process., vol. 88, no. 9, pp. 2350–2356, Sept. 2008. doi: 10.1016/j.sigpro.2008.03.006
|
[290] |
S. Chancellor, Z. Lin, E. L. Goodman, S. Zerwas, and M. De Choudhury, “Quantifying and predicting mental illness severity in online pro-eating disorder communities,” in Proc. 19th ACM Conf. Computer-Supported Cooperative Work and Social Computing, San Francisco, USA, 2016, pp. 1171−1184.
|
[291] |
T. Nguyen, D. Phung, B. Dao, S. Venkatesh, and M. Berk, “Affective and content analysis of online depression communities,” IEEE Trans. Affect. Comput., vol. 5, no. 3, pp. 217–226, Jul.–Sept. 2014. doi: 10.1109/TAFFC.2014.2315623
|
[292] |
J. T. Wolohan, M. Hiraga, A. Mukherjee, Z. Ali Sayyed, and M. Millard, “Detecting linguistic traces of depression in topic-restricted text: Attending to self-stigmatized depression with NLP,” in Proc. 1st Int. Workshop on Language Cognition and Computational Models, Santa Fe, USA, 2018, pp. 11−21.
|
[293] |
M. Nadeem, “Identifying depression on twitter,” arXiv preprint arXiv: 1607.07384, 2016.
|
[294] |
E. E. Newell, S. K. Mccoy, M. L. Newman, J. D. Wellman, and S. K. Gardner, “You sound so down: Capturing depressed affect through depressed language,” J. Lang. Soc. Psychol., vol. 37, no. 4, pp. 451–474, Sept. 2018. doi: 10.1177/0261927X17731123
|
[295] |
M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz, “Predicting depression via social media,” in Proc. 7th Int. AAAI Conf. Web and Social Media, Cambridge, USA, 2013, pp. 128−137.
|
[296] |
F. Magami and L. A. Digiampietri, “Automatic detection of depression from text data: A systematic literacture review,” in Proc. XVI Brazilian Symp. Information Systems, São Bernardo do Campo, Brazil, 2020, pp. 8.
|
[297] |
A. Zirikly and M. Dredze, “Explaining models of mental health via clinically grounded auxiliary tasks,” in Proc. 8th Workshop on Computational Linguistics and Clinical Psychology, Seattle, USA, 2022, pp. 30−39.
|
[298] |
A. Mallol-Ragolta, Z. Zhao, L. Stappen, N. Cummins, and B. W. Schuller, “A hierarchical attention network-based approach for depression detection from transcribed clinical interviews,” in Proc. 20th Annu. Conf. Int. Speech Communication Association, Graz, Austria, 2019, pp. 221−225.
|
[299] |
T. Shen, J. Jia, G. Shen, F. Feng, X. He, H. Luan, J. Tang, T. Tiropanis, T. S. Chua, and W. Hall, “Cross-domain depression detection via harvesting social media,” in Proc. 27th Int. Joint Conf. Artificial Intelligence, Stockholm, Sweden, 2018, pp. 1611−1617.
|
[300] |
S. G. Burdisso, M. Errecalde, and M. Montes-Y-Gómez, “A text classification framework for simple and effective early depression detection over social media streams,” Expert Syst. Appl., vol. 133, pp. 182–197, Nov. 2019. doi: 10.1016/j.eswa.2019.05.023
|
[301] |
Z. Peng, Q. Hu, and J. Dang, “Multi-kernel SVM based depression recognition using social media data,” Int. J. Mach. Learn. Cybern., vol. 10, no. 1, pp. 43–57, Jan. 2019. doi: 10.1007/s13042-017-0697-1
|
[302] |
M. Tlachac and E. Rundensteiner, “Screening for depression with retrospectively harvested private versus public text,” IEEE J. Biomed. Health Inf., vol. 24, no. 11, pp. 3326–3332, Nov. 2020. doi: 10.1109/JBHI.2020.2983035
|
[303] |
T. Liu, J. Meyerhoff, J. C. Eichstaedt, C. J. Karr, S. M. Kaiser, K. P. Kording, D. C. Mohr, and L. H. Ungar, “The relationship between text message sentiment and self-reported depression,” J. Affect. Disord., vol. 302, pp. 7–14, Apr. 2022. doi: 10.1016/j.jad.2021.12.048
|
[304] |
J. Meyerhoff, T. Liu, C. A. Stamatis, T. Liu, H. Wang, Y. Meng, B. Curtis, C. J. Karr, G. Sherman, L. H. Ungar, and D. C. Mohr, “Analyzing text message linguistic features: Do people with depression communicate differently with their close and non-close contacts?,” Behav. Res. Ther., vol. 166, p. 104342, May 2023. doi: 10.1016/j.brat.2023.104342
|
[305] |
G. Shen, J. Jia, L. Nie, F. Feng, C. Zhang, T. Hu, T.-S. Chua, W. Zhu, “Depression detection via harvesting social media: A multimodal dictionary learning solution,” in Proc. 26th Int. Joint Conf. Artificial Intelligence, Melbourne, Australia, 2017, pp. 3838−3844.
|
[306] |
D. Li, H. Chaudhary, and Z. Zhang, “Modeling spatiotemporal pattern of depressive symptoms caused by COVID-19 using social media data mining,” Int. J. Environ. Res. Public Health, vol. 17, no. 14, p. 4988, Jul. 2020. doi: 10.3390/ijerph17144988
|
[307] |
X. Hu, J. Shu, and Z. Jin, “Depression tendency detection model for Weibo users based on Bi-LSTM,” in Proc. IEEE Int. Conf. Artificial Intelligence and Computer Applications, Dalian, China, 2021, pp. 785−790.
|
[308] |
H. Dinkel, M. Wu, and K. Yu, “Text-based depression detection on sparse data,” arXiv preprint arXiv: 1904.05154, 2019.
|
[309] |
H. A. Schwartz, J. Eichstaedt, M. L. Kern, G. Park, M. Sap, D. Stillwell, M. Kosinski, and L. Ungar, “Towards assessing changes in degree of depression through Facebook,” in Proc. Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Baltimore, USA, 2014, pp. 118−125.
|
[310] |
T. Pedersen, “Screening twitter users for depression and PTSD with lexical decision lists,” in Proc. 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Denver, USA, 2015, pp. 46−53.
|
[311] |
H. Almeida, A. Briand, and M.-J. Meurs, “Detecting early risk of depression from social media user-generated content,” in Proc. Conf. Labs of the Evaluation Forum, Dublin, Ireland, 2017.
|
[312] |
C. Tung and W. Lu, “Analyzing depression tendency of web posts using an event-driven depression tendency warning model,” Artif. Intell. Med., vol. 66, pp. 53–62, Jan. 2016. doi: 10.1016/j.artmed.2015.10.003
|
[313] |
X. Wang, C. Zhang, Y. Ji, L. Sun, L. Wu, and Z. Bao, “A depression detection model based on sentiment analysis in micro-blog social network,” in Proc. Trends and Applications in Knowledge Discovery and Data Mining, Golden Coast, Australia, 2013, pp. 201−213.
|
[314] |
A. B. R. Shatte, D. M. Hutchinson, M. Fuller-Tyszkiewicz, and S. J. Teague, “Social media markers to identify fathers at risk of postpartum depression: A machine learning approach,” Cyberpsychol. Behav. Soc. Netw., vol. 23, no. 9, pp. 611–618, Sept. 2020. doi: 10.1089/cyber.2019.0746
|
[315] |
M. R. Islam, M. A. Kabir, A. Ahmed, A. R. M. Kamal, H. Wang, and A. Ulhaq, “Depression detection from social network data using machine learning techniques,” Health Inf. Sci. Syst., vol. 6, no. 1, p. 8, Aug. 2018. doi: 10.1007/s13755-018-0046-0
|
[316] |
D. Mowery, C. Bryan, and M. Conway, “Feature studies to inform the classification of depressive symptoms from twitter data for population health,” arXiv preprint arXiv: 1701.08229, 2017.
|
[317] |
E. Fast, B. Chen, and M. S. Bernstein, “Empath: Understanding topic signals in large-scale text,” in Proc. CHI Conf. Human Factors in Computing Systems, San Jose, USA, 2016, pp. 4647−4657.
|
[318] |
A. G. Reece and C. M. Danforth, “Instagram photos reveal predictive markers of depression,” EPJ Data Sci., vol. 6, no. 1, p. 15, Aug. 2017. doi: 10.1140/epjds/s13688-017-0110-z
|
[319] |
D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.
|
[320] |
P. Resnik, W. Armstrong, L. Claudino, T. Nguyen, V.-A. Nguyen, and J. Boyd-Graber, “Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter,” in Proc. 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Denver, USA, 2015, pp. 99−107.
|
[321] |
L. Mariñelarena-Dondena, E. Ferretti, M. Maragoudakis, M. Sapino, and M. L. Errecalde, “Predicting depression: A comparative study of machine learning approaches based on language usage,” Panam. J. Neuropsychol., vol. 11, no. 3, pp. 42–54, Nov. 2017.
|
[322] |
A. H. Orabi, P. Buddhitha, M. H. Orabi, and D. Inkpen, “Deep learning for depression detection of twitter users,” in Proc. 5th Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, New Orleans, USA, 2018, pp. 88−97.
|
[323] |
F. Sadeque, D. Xu, and S. Bethard, “UArizona at the CLEF eRisk 2017 pilot task: Linear and recurrent models for early depression detection,” in Proc. Conf. Labs of the Evaluation Forum, Dublin, Ireland, 2017.
|
[324] |
Z. Li, Z. An, W. Cheng, J. Zhou, F. Zheng, and B. Hu, “MHA: A multimodal hierarchical attention model for depression detection in social media,” Health Inf. Sci. Syst., vol. 11, no. 1, p. 6, Jan. 2023. doi: 10.1007/s13755-022-00197-5
|
[325] |
H. S. Gavalan, M. N. Rastgoo, and B. Nakisa, “A BERT-based summarization approach for depression detection,” arXiv preprint arXiv: 2409.08483, 2024.
|
[326] |
J. Joshi, R. Goecke, S. Alghowinem, A. Dhall, M. Wagner, J. Epps, G. Parker, and M. Breakspear, “Multimodal assistive technologies for depression diagnosis and monitoring,” J. Multimodal User Interfaces, vol. 7, no. 3, pp. 217–228, Sept. 2013. doi: 10.1007/s12193-013-0123-2
|
[327] |
M. Bilalpur, S. Hinduja, L. A. Cariola, L. B. Sheeber, N. Alien, and L. A. Jeni, “Multimodal feature selection for detecting mothers’ depression in dyadic interactions with their adolescent offspring,” in Proc. 17th Int. Conf. Automatic Face and Gesture Recognition, Waikoloa Beach, USA, 2023, pp. 1−8.
|
[328] |
Y. Gong and C. Poellabauer, “Topic modeling based multi-modal depression detection,” in Proc. 7th Annu. Workshop on Audio/Visual Emotion Challenge, Mountain View, USA, 2017, pp. 69−76.
|
[329] |
M. Niu, K. Chen, Q. Chen, and L. Yang, “HCAG: A hierarchical context-aware graph attention model for depression detection,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Toronto, Canada, 2021, pp. 4235−4239.
|
[330] |
M. Kachele, M. Glodek, D. Zharkov, S. Meudt, and F. Schwenker, “Fusion of audio-visual features using hierarchical classifier systems for the recognition of affective states and the state of depression,” in Proc. 3rd Int. Conf. Pattern Recognition Applications and Methods, Angers, France, 2014, pp. 671−678.
|
[331] |
M. Niu, J. Tao, B. Liu, J. Huang, and Z. Lian, “Multimodal spatiotemporal representation for automatic depression level detection,” IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 294–307, Jan.–Mar. 2023. doi: 10.1109/TAFFC.2020.3031345
|
[332] |
H. P. Espinosa, H. J. Escalante, L. Villaseñor-Pineda, M. Montes-y-Gómez, D. Pinto-Avedaño, and V. Reyez-Meza, “Fusing affective dimensions and audio-visual features from segmented video for depression recognition: INAOE-BUAP’s participation at AVEC’14 challenge,” in Proc. 4th Int. Workshop on Audio/Visual Emotion Challenge, Orlando, USA, 2014, pp. 49−55.
|
[333] |
L. Yang, D. Jiang, W. Han, and H. Sahli, “DCNN and DNN based multi-modal depression recognition,” in Proc. 7th Int. Conf. Affective Computing and Intelligent Interaction, San Antonio, USA, 2017, pp. 484−489.
|
[334] |
L. Yang, D. Jiang, and H. Sahli, “Integrating deep and shallow models for multi-modal depression analysis-hybrid architectures,” IEEE Trans. Affect. Comput., vol. 12, no. 1, pp. 239–253, Jan.–Mar. 2021. doi: 10.1109/TAFFC.2018.2870398
|
[335] |
S. Alghowinem, T. Gedeon, R. Goecke, J. F. Cohn, and G. Parker, “Interpretation of depression detection models via feature selection methods,” IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 133–152, Nov. 2020.
|
[336] |
M. R. Morales and R. Levitan, “Speech vs. text: A comparative analysis of features for depression detection systems,” in Proc. IEEE Spoken Language Technology Workshop, San Diego, USA, 2016, pp. 136−143.
|
[337] |
K. C. Fraser, F. Rudzicz, and G. Hirst, “Detecting late-life depression in Alzheimer’s disease through analysis of speech and language,” in Proc. 3rd Workshop on Computational Linguistics and Clinical Psychology, San Diego, USA, 2016, pp. 1−11.
|
[338] |
T. Al Hanai, M. M. Ghassemi, and J. R. Glass, “Detecting depression with audio/text sequence modeling of interviews,” in Proc. 19th Annu. Conf. Int. Speech Communication Association, Hyderabad, India, 2018, pp. 1716−1720.
|
[339] |
C. Lau, W.-Y. Chan, and X. Zhu, “Improving depression assessment with multi-task learning from speech and text information,” in Proc. 55th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, USA, 2021, pp. 449−453.
|
[340] |
G. Lam, D. Huang, and W. Lin, “Context-aware deep learning for multi-modal depression detection,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Brighton, UK, 2019, pp. 3946−3950.
|
[341] |
E. Toto, M. L. Tlachac, and E. A. Rundensteiner, “AudiBERT: A deep transfer learning multimodal classification framework for depression screening,” in Proc. 30th ACM Int. Conf. Information and Knowledge Management, 2021, pp. 4145−4154.
|
[342] |
R. Flores, M. L. Tlachac, E. Toto, and E. A. Rundensteiner, “AudiFace: Multimodal deep learning for depression screening,” in Proc. Machine Learning for Healthcare Conf., Durham, USA, 2022, pp. 609−630.
|
[343] |
J. R. Williamson, E. Godoy, M. Cha, A. Schwarzentruber, P. Khorrami, Y. Gwon, H.-T. Kung, C. Dagli, and T. F. Quatieri, “Detecting depression using vocal, facial and semantic communication cues,” in Proc. 6th Int. Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, 2016, pp. 11−18.
|
[344] |
L. Yang, D. Jiang, X. Xia, E. Pei, M. C. Oveneke, and H. Sahli, “Multimodal measurement of depression using deep learning models,” in Proc. 7th Annu. Workshop on Audio/Visual Emotion Challenge, Mountain View, USA, 2017, pp. 53−59.
|
[345] |
S. Yin, C. Liang, H. Ding, and S. Wang, “A multi-modal hierarchical recurrent neural network for depression detection,” in Proc. 9th Int. Audio/Visual Emotion Challenge and Workshop, Nice, France, 2019, pp. 65−71.
|
[346] |
M. Morales, S. Scherer, and R. Levitan, “A linguistically-informed fusion approach for multimodal depression detection,” in Proc. 5th Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, New Orleans, USA, 2018, pp. 13−24.
|
[347] |
M. Rohanian, J. Hough, and M. Purver, “Detecting depression with word-level multimodal fusion,” in Proc. 20th Annu. Conf. Int. Speech Communication Association, Graz, Austria, 2019, pp. 1443−1447.
|
[348] |
S. A. Qureshi, M. Hasanuzzaman, S. Saha, and G. Dias, “The verbal and non verbal signals of depression — combining acoustics, text and visuals for estimating depression level,” arXiv preprint arXiv: 1904.07656, 2019.
|
[349] |
J. Gong, J. Wang, S. Qiu, P. Chen, Z. Luo, J. Wang, L. Huang, and Y. Wang, “Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: Voxel-based meta-analysis,” Transl. Psychiatry, vol. 10, no. 1, p. 353, Oct. 2020. doi: 10.1038/s41398-020-01036-5
|
[350] |
N. Patil and G. Lal Gupta, “Depression and associated Alzheimer’s disease,” in The Neuroscience of Depression: Features, Diagnosis, and Treatment, C. R. Martin, L.-A. Hunter, V. B. Patel, V. R. Preedy, and R. Rajendram, Eds. Amsterdam: Elsevier, 2021, pp. 79−87.
|
[351] |
M. L. Radell, E. A. Hamza, and A. A. Moustafa, “Depression in post-traumatic stress disorder,” Rev. Neurosci., vol. 31, no. 7, pp. 703–722, Aug. 2020. doi: 10.1515/revneuro-2020-0006
|
[352] |
N. J. Wiles, A. M. Haase, D. A. Lawlor, A. Ness, and G. Lewis, “Physical activity and depression in adolescents: Cross-sectional findings from the ALSPAC cohort,” Soc. Psychiatry Psychiatr. Epidemiol., vol. 47, no. 7, pp. 1023–1033, Jul. 2012. doi: 10.1007/s00127-011-0422-4
|
[353] |
T. Khumalo and I. E Plattner, “The relationship between locus of control and depression: A cross-sectional survey with university students in Botswana,” S. Afr. J. Psychiatr., vol. 25, p. 1221, Feb. 2019.
|
[354] |
K. Gbyl, E. Rostrup, J. M. Raghava, J. F. Carlsen, L. S. Schmidt, U. Lindberg, A. Ashraf, M. B. Jørgensen, H. B. W. Larsson, R. Rosenberg, and P. Videbech, “Cortical thickness following electroconvulsive therapy in patients with depression: A longitudinal MRI study,” Acta Psychiatr. Scand., vol. 140, no. 3, pp. 205–216, Sept. 2019. doi: 10.1111/acps.13068
|
[355] |
J. Joshi, A. Dhall, R. Goecke, and J. F. Cohn, “Relative body parts movement for automatic depression analysis,” in Proc. Humaine Association Conf. Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2013, pp. 492−497.
|
[356] |
S. Bhatia, R. Goecke, Z. Hammal, and J. F. Cohn, “Automated measurement of head movement synchrony during dyadic depression severity interviews,” in Proc. 14th IEEE Int. Conf. Autom. Face and Gesture Recognition, Lille, France, 2019, pp. 1−8.
|
[357] |
J. Binnewies, L. Nawijn, M. J. Van Tol, N. J. A. Van Der wee, D. J. Veltman, and B. W. J. H. Penninx, “Associations between depression, lifestyle and brain structure: A longitudinal MRI study,” NeuroImage, vol. 231, p. 117834, May 2021. doi: 10.1016/j.neuroimage.2021.117834
|
[358] |
N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. F. Quatieri, “A review of depression and suicide risk assessment using speech analysis,” Speech Commun., vol. 71, pp. 10–49, 2015. doi: 10.1016/j.specom.2015.03.004
|
[359] |
H. Kaya, D. Fedotov, D. Dresvyanskiy, M. Doyran, D. Mamontov, M. Markitantov, A. A. A. Salah, E. Kavcar, A. Karpov, and A. Ali Salah, “Predicting depression and emotions in the cross-roads of cultures, para-linguistics, and non-linguistics,” in Proc. 9th Int. Audio/Visual Emotion Challenge and Workshop, Nice, France, 2019, pp. 27−35.
|
[360] |
B. Stasak, D. Joachim, and J. Epps, “Breaking age barriers with automatic voice-based depression detection,” IEEE Pervasive Comput., vol. 21, no. 2, pp. 10–19, Apr.–Jun. 2022. doi: 10.1109/MPRV.2022.3163656
|
[361] |
M. Bilalpur, S. Hinduja, L. A. Cariola, L. Sheeber, N. B. Allen, L.-P. Morency, and J. F. Cohn, “SHAP-based prediction of mother’s history of depression to understand the influence on child behavior,” in Proc. 25th Int. Conf. Multimodal Interaction, Paris, France, 2023, pp. 537−544.
|