A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Man, M. Deng, Z. Wang, and Q.-L. Han, “A new parameter estimation methodology using steady state yaw rate measurements for lateral vehicle dynamics,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125366
Citation: Z. Man, M. Deng, Z. Wang, and Q.-L. Han, “A new parameter estimation methodology using steady state yaw rate measurements for lateral vehicle dynamics,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125366

A New Parameter Estimation Methodology Using Steady State Yaw Rate Measurements for Lateral Vehicle Dynamics

doi: 10.1109/JAS.2025.125366
More Information
  • In this paper, the lateral dynamics of road vehicles (LDRV) is further studied from the viewpoint of vehicle informatics. It is seen that LDRV is first decoupled and the vehicle slip angle is proved to be observable from the yaw rate measurements. A new methodology of parameter estimation using steady-state yaw rate measurements (PESYRM) is then developed to accurately estimate the parameters of LDRV. The important characteristics of PESYRM comprise four parts: ( i ) The steering angle input to LDRV is chosen as the linear combination of sinusoids; ( ii ) Only the steady state information of yaw rate in any fundamental period is required to accurately estimate the unknown parameters of LDRV; ( iii ) Unlike many existing parameter estimation methods, the time consuming computing of the inverse of high-dimensional data matrix is avoided by making full use of the orthogonal properties of trigonometric base functions; ( iv ) All of system information of LDRV is embedded in the measurements of the steady state yaw rate in any fundamental period. A simulation example is carried out to show the advantages and effectiveness of the new research findings for LDRV.

     

  • loading
  • [1]
    Z. Zhou, Y. Wang, G. Zhou, X. Liu, M. Wu, and K. Dai, “Vehicle lateral dynamics-inspired hybrid model using neural network for parameter identification and error characterization,” IEEE Trans. Veh. Technol., vol. 73, no. 11, pp. 16173–16186, Nov. 2024. doi: 10.1109/TVT.2024.3416317
    [2]
    D. Jeong, G. Ko, and S. B. Choi, “Estimation of sideslip angle and cornering stiffness of an articulated vehicle using a constrained lateral dynamics model,” Mechatronics, vol. 85, p. 102810, Aug. 2022. doi: 10.1016/j.mechatronics.2022.102810
    [3]
    L. Bascetta and G. Ferretti, “LFT-based identification of lateral vehicle dynamics,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 1349–1362, Feb. 2022. doi: 10.1109/TVT.2021.3134591
    [4]
    B. A. Vicente, S. S. James, and S. R. Anderson, “Linear system identification versus physical modeling of lateral-longitudinal vehicle dynamics,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp. 1380–1387, May 2021. doi: 10.1109/TCST.2020.2994120
    [5]
    G. Reina and A. Messina, “Vehicle dynamics estimation via augmented Extended Kalman Filtering,” Measurement, vol. 133, pp. 383–395, Feb. 2019. doi: 10.1016/j.measurement.2018.10.030
    [6]
    R. Rajamani, Vehicle Dynamics and Control. 2nd ed. New York, USA: Springer, 2012.
    [7]
    D. Chindamo, B. Lenzo, and M. Gadola, “On the vehicle sideslip angle estimation: A literature review of methods, models, and innovations,” Appl. Sci., vol. 8, no. 3, p. 355, Mar. 2018. doi: 10.3390/app8030355
    [8]
    F. Lai, X. Huang, and X. Ye, “Analysis of vehicle driving stability based on longitudinal-lateral and vertical unified dynamics model,” Int. J. Automot. Technol., vol. 23, no. 1, pp. 73–87, Feb. 2022. doi: 10.1007/s12239-022-0006-1
    [9]
    X. Jin, G. Yin, and N. Chen, “Advanced estimation techniques for vehicle system dynamic state: A survey,” Sensors, vol. 19, no. 19, p. 4289, Oct. 2019. doi: 10.3390/s19194289
    [10]
    W. J. Manning and D. A. Crolla, “A review of yaw rate and sideslip controllers for passenger vehicles,” Trans. Inst. Meas. Control, vol. 29, no. 2, pp. 117–135, Jun. 2007. doi: 10.1177/0142331207072989
    [11]
    B. Lenzo, A. Sorniotti, P. Gruber, and K. Sannen, “On the experimental analysis of single input single output control of yaw rate and sideslip angle,” Int. J. Automot. Technol., vol. 18, no. 5, pp. 799–811, Oct. 2017. doi: 10.1007/s12239-017-0079-4
    [12]
    K. Nam, S. Oh, H. Fujimoto, and Y. Hori, “Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 988–1000, Mar. 2013. doi: 10.1109/TIE.2012.2188874
    [13]
    F. Cheli, E. Sabbioni, M. Pesce, and S. Melzi, “A methodology for vehicle sideslip angle identification: Comparison with experimental data,” Veh. Syst. Dyn., vol. 45, no. 6, pp. 549–563, May 2007. doi: 10.1080/00423110601059112
    [14]
    A. Y. Ungoren, H. Peng, and H. E. Tseng, “A study on lateral speed estimation methods,” Int. J. Veh. Auton. Syst., vol. 2, no. 1-2, pp. 126–144, May 2004.
    [15]
    K. T. Leung, J. F. Whidborne, D. Purdy, and A. Dunoyer, “A review of ground vehicle dynamic state estimations utilising GPS/INS,” Veh. Syst. Dyn., vol. 49, no. 1-2, pp. 29–58, Feb. 2011. doi: 10.1080/00423110903406649
    [16]
    D. Piyabongkarn, R. Rajamani, J. A. Grogg, and J. Y. Lew, “Development and experimental evaluation of a slip angle estimator for vehicle stability control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 1, pp. 78–88, Jan. 2009. doi: 10.1109/TCST.2008.922503
    [17]
    J. Ryu and J. C. Gerdes, “Integrating inertial sensors with global positioning system (GPS) for vehicle dynamics control,” J. Dyn. Syst. Meas. Control, vol. 126, no. 2, pp. 243–254, Jun. 2004. doi: 10.1115/1.1766026
    [18]
    S. Lee, K. Nakano, and M. Ohori, “On-board identification of tyre cornering stiffness using dual Kalman filter and GPS,” Veh. Syst. Dyn., vol. 53, no. 4, pp. 437–448, Jan. 2015. doi: 10.1080/00423114.2014.999800
    [19]
    M. Gadola, D. Chindamo, M. Romano, and F. Padula, “Development and validation of a Kalman filter-based model for vehicle slip angle estimation,” Veh. Syst. Dyn., vol. 52, no. 1, pp. 68–84, Jan. 2014. doi: 10.1080/00423114.2013.859281
    [20]
    J. Dakhlallah, S. Glaser, S. Mammar, and Y. Sebsadji, “Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation,” in Proc. American Control Conf., Seattle, USA, 2008, pp. 4597–4602.
    [21]
    M. Doumiati, A. Charara, A. Victorino, and D. Lechner, Vehicle Dynamics Estimation Using Kalman Filtering: Experimental Validation. London, UK: ISTE Ltd., 2013.
    [22]
    M. Gadola, D. Chindamo, M. Romano, and F. Padula, “Development and validation of a Kalman filter-based model for vehicle slip angle estimation,” Veh. Syst. Dyn., vol. 52, no. 1, pp. 68–84, Dec. 2014. doi: 10.1080/00423114.2013.859281
    [23]
    B.-C. Chen and F.-C. Hsieh, “Sideslip angle estimation using extended Kalman filter,” Veh. Syst. Dyn., vol. 46, no. s1, pp. 353–364, Jan. 2008.
    [24]
    K. Jiang, A. C. Victorino, and A. Charara, “Adaptive estimation of vehicle dynamics through RLS and Kalman filter approaches,” in Proc. 18th Int. Conf. Intelligent Transportation Systems, Gran Canaria, Spain, 2015, pp. 1741–1746.
    [25]
    S. Antonov, A. Fehn, and A. Kugi, “Unscented Kalman filter for vehicle state estimation,” Veh. Syst. Dyn., vol. 49, no. 9, pp. 1497–1520, Mar. 2011. doi: 10.1080/00423114.2010.527994
    [26]
    P. J. T. Venhovens and K. Naab, “Vehicle dynamics estimation using Kalman filters,” Veh. Syst. Dyn., vol. 32, no. 2–3, pp. 171–184, Aug. 1999. doi: 10.1076/vesd.32.2.171.2088
    [27]
    B. L. Boada, M. J. L. Boada, and V. Diaz, “Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an unscented Kalman filter algorithm,” Mech. Syst. Signal Process., vol. 72-73, pp. 832–845, May 2016. doi: 10.1016/j.ymssp.2015.11.003
    [28]
    C.-K. Chen and A.-T. Le, “Vehicle side-slip angle and lateral force estimator based on extended Kalman filtering algorithm,” in AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, V. H. Duy, T. T. Dao, I. Zelinka, H.-S. Choi, and M. Chadli, Eds. Cham, Germany: Springer, 2016, pp. 377–388.
    [29]
    C. Zong, D. Hu, X. Yang, Z. Pan, and Y. Xu, “Vehicle driving state estimation based on extended Kalman filter,” J. Jilin Univ. (Eng. Technol. Ed.), vol. 39, no. 1, pp. 7–11, Jan. 2009.
    [30]
    Y. Chen, Y. Ji, and K. Guo, “A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces,” Veh. Syst. Dyn., vol. 52, no. 12, pp. 1716–1728, Sep. 2014. doi: 10.1080/00423114.2014.960430
    [31]
    B. Subudhi and S. S. Ge, “Sliding-mode-observer-based adaptive slip ratio control for electric and hybrid vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 13, no. 4, pp. 1617–1626, Dec. 2012. doi: 10.1109/TITS.2012.2196796
    [32]
    N. Patel, C. Edwards, and S. K. Spurgeon, “Optimal braking and estimation of tyre friction in automotive vehicles using sliding modes,” Int. J. Syst. Sci., vol. 38, no. 11, pp. 901–912, Oct. 2007. doi: 10.1080/00207720701409637
    [33]
    M. Tanelli, A. Ferrara, and P. Giani, “Combined vehicle velocity and tire-road friction estimation via sliding mode observers,” in Proc. IEEE Int. Conf. Control Applications, Dubrovnik, Croatia, 2012, pp. 130–135.
    [34]
    N. Mśirdi, A. Rabhi, L. Fridman, J. Davila, and Y. Delanne, “Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiffness,” in Proc. American Control Conf., Minneapolis, USA, 2006, pp. 3316–3321.
    [35]
    O. Khemoudj, H. Imine, and M. Djemaï, “Heavy duty vehicle tyre forces estimation using variable gain sliding mode observer,” Int. J. Veh. Des., vol. 62, no. 2-4, pp. 274–288, Jan. 2013.
    [36]
    Y. Chen, Y. Ji, and K. Guo, “A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces,” Veh. Syst. Dyn., vol. 52, no. 12, pp. 1716–1728, Sep. 2014. doi: 10.1080/00423114.2014.960430
    [37]
    J. J. Rath, K. C. Veluvolu, M. Defoort, and Y. C. Soh, “Higher-order sliding mode observer for estimation of tyre friction in ground vehicles,” IET Control Theory Appl., vol. 8, no. 6, pp. 399–408, Apr. 2014. doi: 10.1049/iet-cta.2013.0593
    [38]
    J. Chen, J. Song, L. Li, G. Jia, X. Ran, and C. Yang, “UKF-based adaptive variable structure observer for vehicle sideslip with dynamic correction,” IET Control Theory Appl., vol. 10, no. 14, pp. 1641–1652, Sep. 2016. doi: 10.1049/iet-cta.2015.1030
    [39]
    X. Huang and J. Wang, “Robust sideslip angle estimation for lightweight vehicles using smooth variable structure filter,” in Proc. ASME Dynamic Systems and Control Conf., Palo Alto, USA, 2013, pp. 21–23.
    [40]
    J. C. Limroth and T. Kurfess, “Real-time vehicle parameter estimation and equivalent moment electronic stability control,” Int. J. Veh. Des., vol. 68, no. 1-3, pp. 221–244, Aug. 2015.
    [41]
    C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems, and Transforms. 3rd ed. Upper Saddle River, USA: Prentice Hall, 2003.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(4)

    Article Metrics

    Article views (12) PDF downloads(4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return