| Citation: | D. Yu, H. Li, L. Fan, Z. Wang, and X. Li, “Searching positive-incentive noise from optimal consensus in continuous action iterated dilemma,” IEEE/CAA J. Autom. Sinica, vol. 13, no. 2, pp. 1–12, Feb. 2026. doi: 10.1109/JAS.2025.125348 |
| [1] |
J. Sang, D. Ma, and Y. Zhou, “Group-consensus of hierarchical containment control for linear multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1462–1474, 2023. doi: 10.1109/JAS.2023.123528
|
| [2] |
J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q.-L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, 2022. doi: 10.1109/JAS.2022.105506
|
| [3] |
Z. Zhou, J. Liu, and J. Yu, “A survey of underwater multi-robot systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 1–18, 2021.
|
| [4] |
D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, 2021. doi: 10.1109/JAS.2021.1003820
|
| [5] |
Z. Wang, X. Jin, T. Zhang, and D. Yu, “A finite-time convergent analysis of continuous action iterated dilemma,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 563–565, 2024. doi: 10.1109/JAS.2023.123606
|
| [6] |
Z. Wang, M. Jusup, L. Shi, J.-H. Lee, Y. Iwasa, and S. Boccaletti, “Exploiting a cognitive bias promotes cooperation in social dilemma experiments,” Nature Communications, vol. 9, no. 1, p. 2954, 2018. doi: 10.1038/s41467-018-05259-5
|
| [7] |
X.-J. Li and X. Li, “Perception effect in evolutionary vaccination game under prospect-theoretic approach,” IEEE Trans. Computational Social Systems, vol. 7, no. 2, pp. 329–338, 2020. doi: 10.1109/TCSS.2019.2960818
|
| [8] |
M. Feng, B. Pi, L.-J. Deng, and J. Kurths, “An evolutionary game with the game transitions based on the markov process,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 54, no. 1, pp. 609–621, 2024. doi: 10.1109/TSMC.2023.3315963
|
| [9] |
Z. Wang, C. Mu, S. Hu, C. Chu, and X. Li, “Modelling the dynamics of regret minimization in large agent populations: A master equation approach.” in Proc. IJCAI, 2022, pp. 534–540.
|
| [10] |
O. Leimar, S. R. Dall, A. I. Houston, and J. M. McNamara, “Behavioural specialization and learning in social networks,” Proc. Royal Society B, vol. 289, no. 1980, p. 20220954, 2022. doi: 10.1098/rspb.2022.0954
|
| [11] |
W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I. Kim, “A survey on consensus mechanisms and mining strategy management in blockchain networks,” IEEE Access, vol. 7, p. 22, 2019.
|
| [12] |
Y. Xing, J. Wu, F. Chiclana, G. Yu, M. Cao, and E. Herrera-Viedma, “A bargaining game based feedback mechanism to support consensus in dynamic social network group decision making,” Information Fusion, vol. 93, pp. 363–382, 2023. doi: 10.1016/j.inffus.2023.01.004
|
| [13] |
X. Jin, Z. Wang, D. Yu, and X. Li, “The convergence analysis of evolutionary dynamics for continuous action iterated dilemma in information loss networks,” IEEE Trans. Comput. Social Systems, vol. 11, no. 2, pp. 2595–2605, 2024. doi: 10.1109/TCSS.2023.3273559
|
| [14] |
S.-N. Shan, Z.-C. Zhang, W.-Y. Ji, and H. Wang, “Analysis of collaborative urban public crisis governance in complex system: A multi-agent stochastic evolutionary game approach,” Sustainable Cities and Society, vol. 91, p. 104418, 2023. doi: 10.1016/j.scs.2023.104418
|
| [15] |
C. Dong, J. Liu, and J. Mi, “How to enhance data sharing in digital government construction: A tripartite stochastic evolutionary game approach,” Systems, vol. 11, no. 4, p. 212, 2023. doi: 10.3390/systems11040212
|
| [16] |
R. Fan, F. Chen, Y. Wang, Y. Wang, and R. Chen, “Study on population behavior under home quarantine policies of covid-19 in china based on double-layer network evolutionary games, ” J. Intelligent & Fuzzy Systems, no. Preprint, pp. 1–14, 2023.
|
| [17] |
M. Chica, R. Chiong, J. J. Ramasco, and H. Abbass, “Effects of update rules on networked n-player trust game dynamics,” Communications in Nonlinear Science and Numerical Simulation, vol. 79, p. 104870, 2019. doi: 10.1016/j.cnsns.2019.104870
|
| [18] |
K. A. Kabir and J. Tanimoto, “The role of pairwise nonlinear evolutionary dynamics in the rock-paper-scissors game with noise,” Applied Math. and Computation, vol. 394, p. 125767, 2021. doi: 10.1016/j.amc.2020.125767
|
| [19] |
H. Liang, Y. Cui, X. Ren, and X. Wang, “Almost sure exponential stability of two-strategy evolutionary games with multiplicative noise,” Information Sciences, vol. 579, pp. 888–903, 2021. doi: 10.1016/j.ins.2021.08.091
|
| [20] |
H. Liang, Y. Cui, Z. Zhou, and B. Ding, “Two-strategy evolutionary games with stochastic adaptive control,” Int. J. Adaptive Control and Signal Processing, vol. 36, no. 2, pp. 251–263, 2022. doi: 10.1002/acs.3301
|
| [21] |
K. A. Kabir, M. S. Islam, and S. Nijhum, “Exploring the performance of volatile mutations on evolutionary game dynamics in complex networks,” Heliyon, vol. 9, no. 6, 2023.
|
| [22] |
K. Okita, Y. Tatsukawa, S. Utsumi, M. R. Arefin, M. A. Hossain, and J. Tanimoto, “Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the sir process on a scale-free network,” Chaos, Solitons & Fractals, vol. 167, p. 113029, 2023.
|
| [23] |
M. Alam, K. Nagashima, and J. Tanimoto, “Various error settings bring different noise-driven effects on network reciprocity in spatial prisoner’s dilemma,” Chaos, Solitons & Fractals, vol. 114, pp. 338–346, 2018.
|
| [24] |
X. Li, “Positive-incentive noise,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 6, pp. 8708–8714, 2024. doi: 10.1109/TNNLS.2022.3224577
|
| [25] |
Q. Wei, X. Wang, X. Zhong, and N. Wu, “Consensus control of leaderfollowing multi-agent systems in directed topology with heterogeneous disturbances,” IEEE/CAA J. Autom. sinica, vol. 8, no. 2, pp. 423–431, 2021. doi: 10.1109/JAS.2021.1003838
|
| [26] |
G. Zhang, B. Liu, L. Wang, D. Yu, and K. Xing, “Distributed coevolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem,” IEEE Trans. Evolutionary Computation, vol. 26, no. 5, pp. 1043–1057, 2022. doi: 10.1109/TEVC.2022.3150771
|
| [27] |
P. Yu, K.-Z. Liu, X. Liu, X. Li, M. Wu, and J. She, “Robust consensus tracking control of uncertain multi-agent systems with local disturbance rejection,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 427–438, 2023. doi: 10.1109/JAS.2023.123231
|
| [28] |
Z. Zhang and Z. Li, “Personalized individual semantics-based consistency control and consensus reaching in linguistic group decision making,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 52, no. 9, pp. 5623–5635, 2021.
|
| [29] |
L. Mo and S. Guo, “Consensus of linear multi-agent systems with persistent disturbances via distributed output feedback,” J. Systems Science and Complexity, vol. 32, pp. 835–845, 2019. doi: 10.1007/s11424-018-7265-y
|
| [30] |
Y. Zheng, Y. Wei, and S. Li, “Coupling degree clustering-based distributed model predictive control network design,” IEEE Trans. Automation Science and Engineering, vol. 15, no. 4, pp. 1749–1758, 2018. doi: 10.1109/TASE.2017.2780444
|
| [31] |
L. Chen, Y. Li, and S. Tong, “Neural network adaptive consensus control for nonlinear multi-agent systems encountered sensor attacks,” Int. J. Systems Science, vol. 54, no. 12, pp. 2536–2550, 2023. doi: 10.1080/00207721.2023.2240465
|
| [32] |
T. Aschenbruck, F. Petzke, P. Rumschinski, and S. Streif, “On consistency, viability, and admissibility in constrained ensemble and hierarchical control systems,” IEEE Trans. Autom. Control, vol. 68, no. 8, pp. 4990–4997, 2023. doi: 10.1109/TAC.2022.3217925
|
| [33] |
N. Zhang, J. Xia, J. H. Park, J. Zhang, and H. Shen, “Improved disturbance observer-based fixed-time adaptive neural network consensus tracking for nonlinear multi-agent systems,” Neural Networks, vol. 162, pp. 490–501, 2023. doi: 10.1016/j.neunet.2023.03.016
|
| [34] |
M. Lv, B. De Schutter, C. Shi, and S. Baldi, “Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions,” Automatica, vol. 137, p. 110143, 2022. doi: 10.1016/j.automatica.2021.110143
|
| [35] |
P. Wang, H. Deng, J. Zhang, L. Wang, M. Zhang, and Y. Li, “Model predictive control for connected vehicle platoon under switching communication topology,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 7, pp. 7817–7830, 2021.
|
| [36] |
J. Liu, J. Li, H. Song, A. Nawaz, and Y. Qu, “Nonlinear secondary voltage control of islanded microgrid via distributed consistency,” IEEE Trans. Energy Conversion, vol. 35, no. 4, pp. 1964–1972, 2020. doi: 10.1109/TEC.2020.2998897
|
| [37] |
Y. Zhu, Z. Wang, H. Liang, and C. K. Ahn, “Neural-network-based predefined-time adaptive consensus in nonlinear multi-agent systems with switching topologies,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 7, pp. 9995–10005, 2024. doi: 10.1109/TNNLS.2023.3238336
|
| [38] |
F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative control of multi-agent systems: optimal and adaptive design approaches. Springer Science & Business Media, 2013.
|
| [39] |
Tulus, L. Siahaan, T. Marpaung, and M. Syahputra, “Stability analysis of heartbeat system with Lyapunov’s direct method,” J. Physics: Conf. Series, vol. 1542, no. 1, p. 12054, 2020. doi: 10.1088/1742-6596/1542/1/012054
|
| [40] |
Y. Meng, M. Broom, and A. Li, “Impact of misinformation in the evolution of collective cooperation on networks,” J. Royal Society Interface, vol. 20, no. 206, p. 20230295, 2023. doi: 10.1098/rsif.2023.0295
|