Citation: | S. Dong, M. Xiao, Z. Wang, W. Yu, W. Zheng, and L. Rutkowski, “Pattern optimization of fractional diffusive schnakenberg system by PD control strategy,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125303 |
[1] |
A. M. Turing, “The chemical basis of morphogenesis,” Phil. Trans. R. Soc. Lond. Ser. B, vol. 237, no. 641, pp. 37–72, Aug. 1952. doi: 10.1098/rstb.1952.0012
|
[2] |
H. Lhachemi and C. Prieur, “Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6143–6150, Nov. 2022. doi: 10.1109/TAC.2021.3130874
|
[3] |
H. Lhachemi, C. Prieur, and E. Trelat, “PI regulation of a reaction-diffusion equation with delayed boundary control,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1573–1587, Apr. 2021. doi: 10.1109/TAC.2020.2996598
|
[4] |
X. Z. Liu, K. N. Wu, and Z. T. Li, “Exponential stabilization of reaction-diffusion systems via intermittent boundary control,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 3036–3042, Jun. 2022. doi: 10.1109/TAC.2021.3100289
|
[5] |
G. Fragnelli and D. Mugnai, “Turing patterns for a coupled two cell generalized Schnakenberg model,” Complex Var. Elliptic Equ., vol. 65, no. 8, pp. 1343–1359, Jun. 2019.
|
[6] |
Y. Lu, M. Xiao, C. Huang, Z. Cheng, Z. Wang, and J. Cao, “Early warning of tipping in a chemical model with cross-diffusion via spatiotemporal pattern formation and transition,” Chaos, vol. 33, no. 7, Jul. 2023.
|
[7] |
R. Yang and Y. Song, “Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model,” Nonlinear Anal. Real World Appl., vol. 31, pp. 356–387, Oct. 2016. doi: 10.1016/j.nonrwa.2016.02.006
|
[8] |
J. Schnakenberg, “Simple chemical reaction systems with limit cycle behaviour,” J. Theor. Biol., vol. 81, no. 3, pp. 389–400, Dec. 1979. doi: 10.1016/0022-5193(79)90042-0
|
[9] |
Y. Ishii, “Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity,” Commun. Pure Appl. Math., vol. 19, pp. 2965–3031, Jun. 2020.
|
[10] |
D. Gomez, L. Mei, and J. Wei, “Stable and unstable periodic spiky solutions for the Gray-Scott system and the Schnakenberg system,” J. Dyn. Differ. Equ., vol. 32, pp. 441–481, Feb. 2020. doi: 10.1007/s10884-019-09736-3
|
[11] |
D. Iron, J. Wei, and M. Winter, “Stability analysis of Turing patterns generated by the Schnakenberg model,” J. Math. Biol., vol. 49, pp. 358–390, Feb. 2004. doi: 10.1007/s00285-003-0258-y
|
[12] |
Y. Ishii and K. Kurata, “Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs,” Commun. Pure Appl. Math., vol. 20, no. 4, pp. 1633–1679, Apr. 2021.
|
[13] |
Y. Ishii, “The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model,” J. Differ. Equ., vol. 285, pp. 321–382, Jun. 2021. doi: 10.1016/j.jde.2021.03.007
|
[14] |
H. G. Kaper, S. Wang, and M. Yari, “Dynamical transitions of Turing patterns,” Nonlinearity, vol. 22, no. 3, p. 601, Feb. 2009. doi: 10.1088/0951-7715/22/3/006
|
[15] |
C. Xu and J. Wei, “Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model,” Nonlinear Anal. Real World Appl., vol. 13, no. 4, pp. 1961–1977, Aug. 2012. doi: 10.1016/j.nonrwa.2012.01.001
|
[16] |
W. Jiang, H. Wang, and X. Cao, “Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay,” J. Dyn. Differ. Equ., vol. 31, pp. 2223–2247, Dec. 2019. doi: 10.1007/s10884-018-9702-y
|
[17] |
H. K. Khudhair, Y. Zhang, and N. Fukawa, “Pattern selection in the Schnakenberg equations: From normal to anomalous diffusion,” Numer. Methods Partial. Differ. Equ., vol. 38, no. 6, pp. 1843–1860, Nov. 2022. doi: 10.1002/num.22842
|
[18] |
G. Liu and Y. Wang, “Pattern formation of coupled two-cell Schnakenberg model,” Dyn. Syst. Ser. S., vol. 10, no. 5, pp. 1051–1062, Oct. 2017.
|
[19] |
T. Wong and M. J. Ward, “Spot patterns in the 2-D Schnakenberg model with localized heterogeneities,” Stud. Appl. Math., vol. 146, no. 4, pp. 779–833, Feb. 2021. doi: 10.1111/sapm.12361
|
[20] |
L. Ping, J. Shi, Y. Wang, and X. Feng, “Bifurcation analysis of reaction-diffusion Schnakenberg model,” J. Math. Chem., vol. 51, pp. 2001–2019, Jun. 2013. doi: 10.1007/s10910-013-0196-x
|
[21] |
M. R. Ricard and S. Mischler, “Turing instabilities at Hopf bifurcation,” J. Nonlinear Sci., vol. 19, pp. 467–496, Feb. 2009. doi: 10.1007/s00332-009-9041-6
|
[22] |
M. A. J. Chaplain, M. Ganesh, and I. G. Graham, “Spatiotemporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth,” J. Math. Biol., vol. 42, pp. 387–423, May 2001. doi: 10.1007/s002850000067
|
[23] |
E. H. Kerner, “A statistical mechanics of interacting biological species,” Bull. Math. Biol., vol. 19, pp. 121–146, Jun. 1957.
|
[24] |
P. Zhu, M. Xiao, X. Huang, F. Zhang, Z. Wang, and J. Cao, “Spatiotemporal dynamics optimization of a delayed reaction-diffusion mussel-algae model based on PD control strategy,” Chaos Solitons Fractals, vol. 173, Aug. 2023.
|
[25] |
A. Gerisch and M. Chaplain, “Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems,” Math. Comput. Mod., vol. 43, no. 1, pp. 49–75, 2006.
|
[26] |
C. Curro and G. Valenti, “Subcritical Turing patterns in hyperbolic models with cross-diffusion,” Ric. Mat., vol. 71, pp. 147–167, Apr. 2021.
|
[27] |
A. Madzvamuse, H. S. Ndakwo, and R. Barreira, “Cross-diffusions-driven instability for reaction-diffusion systems: analysis and simulations,” J. Math. Biol., vol. 70, no. 4, pp. 709–743, Mar. 2015. doi: 10.1007/s00285-014-0779-6
|
[28] |
R. Yang, “Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model,” Nonlinear Dyn., vol. 110, no. 2, pp. 1753–1766, Jul. 2022. doi: 10.1007/s11071-022-07691-1
|
[29] |
R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, Dec. 2000. doi: 10.1016/S0370-1573(00)00070-3
|
[30] |
G. Gambino, M. C. Lombardo, M. Sammartino, and V. Sciacca, “Turing pattern formation in the Brusselator system with nonlinear diffusion,” Phys. Rev. E, vol. 88, no. 4, Oct. 2013.
|
[31] |
Y. Luchko and R. Gorenflo, “Anomalous diffusion modeled by fractional diffusion equations,” J. Appl. Math. Phys., vol. 50, no. 5, pp. 699–712, Oct. 1999.
|
[32] |
F. Ge, Y. Chen, and C. Kou, “Cyber-physical systems as general distributed parameter systems: three types of fractional order models and emerging research opportunities,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 4, pp. 353–357, Oct. 2015. doi: 10.1109/JAS.2015.7296529
|
[33] |
B. Li and J. Wang, “Anomalous heat conduction and anomalous diffusion in one-dimensional systems,” Phys. Rev. Lett., vol. 91, no. 4, Jul. 2003.
|
[34] |
Y. Nec, A. A. Nepomnyashchy, and A. A. Golovin, “Front-type solutions of fractional Allen-Cahn equation,” Phys. D, vol. 237, no. 24, pp. 3237–3251, Dec. 2008. doi: 10.1016/j.physd.2008.08.002
|
[35] |
F. Feng, J. Yan, F. C. Liu, and Y. F. He, “Pattern formation in superdiffusion Oregonator model,” Chinese Phys. B, vol. 25, no. 10, Aug. 2016.
|
[36] |
S. G. Samko, A. A. Kilbas, and O. I. Marichev, “Fractional integrals and derivatives: theory and applications,” Gordon and Breach Science Publishers, 1993.
|
[37] |
Podlubny, “Fractional differential equations, ” Academic Press, 1999.
|
[38] |
H. Min, S. Xu, B. Zhang, Q. Ma, and D. Yuan, “Fixed-time lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539
|
[39] |
T. Wang, Q. Chen, X. Lang, L. Xie, P. Li and H. Su, “Detection of oscillations in process control loops from visual image space using deep convolutional networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 982–995, Apr. 2024. doi: 10.1109/JAS.2023.124170
|
[40] |
K. Zhao, C. Wen, Y. Song, and F. L. Lewis, “Adaptive uniform performance control of strict-feedback nonlinear systems with time-varying control gain,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 451–461, Feb. 2023. doi: 10.1109/JAS.2022.106064
|
[41] |
L. Lin, J. Cao, J. Lu and L. Rutkowski, “Set stabilization of large-scale stochastic boolean networks: a distributed control strategy,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 806–808, Mar. 2024. doi: 10.1109/JAS.2023.123903
|
[42] |
Y. Cui, P. Cheng and X. Ge, “Exponential synchronization of delayed stochastic complex dynamical networks via hybrid impulsive control,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 785–787, Mar. 2024. doi: 10.1109/JAS.2023.123867
|
[43] |
S. B. Chen, S. Soradi-Zeid, H. Jahanshahi, R. Alcaraz, J. F. Gómez-Aguilar, S. Bekiros, and Y. M. Chu, “Optimal control of time-delay fractional equations via a joint application of radial basis functions and collocation method,” Entropy, vol. 22, no. 11, p. 1213, Oct. 2020. doi: 10.3390/e22111213
|
[44] |
S. B. Chen, S. Soradi-Zeid, M. Alipour, Y. M. Chu, J. F. Gomez-Aguilar, and H. Jahanshahi, “Optimal control of nonlinear time-delay fractional differential equations with Dickson polynomials,” Fractals, vol. 29, no. 4, p. 2150079, Apr. 2021. doi: 10.1142/S0218348X21500791
|
[45] |
R. Dhayal, J. F. Gomez-Aguilar, and G. Fernandez-Anaya, “Optimal controls for fractional stochastic differential systems driven by Rosenblatt process with impulses,” Optim. Control Appl. Meth., vol. 43, no. 2, pp. 386–401, Oct. 2021.
|
[46] |
T. Hussain, A. U. Awan, K. A. Abro, M. Ozair, M. Manzoor, J. F. Gomez-Aguilar, and A. M. Galal, “A passive verses active exposure of mathematical smoking model: a role for optimal and dynamical control,” Nonlinear Eng., vol. 11, no. 1, pp. 507–521, Sep. 2022. doi: 10.1515/nleng-2022-0214
|
[47] |
F. Koudohode, N. Espitia, and M. Krstic, “Event-triggered boundary control of an unstable reaction diffusion PDE with input delay,” Syst. Control Lett., vol. 186, Apr. 2024.
|
[48] |
H. Lhachemi and C. Prieur, “Local output feedback stabilization of a reaction-diffusion equation with saturated actuation,” IEEE Trans. Autom. Control, vol. 68, no. 1, pp. 564–571, Jan. 2023. doi: 10.1109/TAC.2022.3144609
|
[49] |
Y. Kao, S. Ma, H. Xia, C. Wang, and Y. Liu, “Integral sliding mode control for a kind of impulsive uncertain reaction-diffusion systems,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 1154–1160, Feb. 2023. doi: 10.1109/TAC.2022.3149865
|
[50] |
R. Rao and Q. Zhu, “Synchronization for reaction-diffusion switched delayed feedback epidemic systems via impulsive control,” Mathematics, vol. 12, no. 3, p. 447, Jan. 2024. doi: 10.3390/math12030447
|
[51] |
Q. Lu, M. Xiao, B. Tao, C. Huang, S. Shi, Z. Wang, and G. Jiang, “Complex dynamic behaviors of a congestion control system under a novel PD1n control law: stability, bifurcation and periodic oscillations,” Chaos Solitons Fractals, vol. 126, pp. 242–252, Sep. 2019. doi: 10.1016/j.chaos.2018.09.048
|
[52] |
P. Ghosh, “Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system,” Phys. Rev. E., vol. 84, no. 1, p. 016222, Jul. 2011. doi: 10.1103/PhysRevE.84.016222
|
[53] |
Y. Lu, et al, “Hybrid Control Synthesis for Turing Instability and Hopf Bifurcation of Marine Planktonic Ecosystems With Diffusion,” IEEE Access, vol. 9, pp. 111326–111335, Aug. 2021. doi: 10.1109/ACCESS.2021.3103446
|
[54] |
Y. Luan, M. Xiao, Z. Wang, and J. Zhao, “Hybrid control of Turing instability and Hopf bifurcation in CDK1-APC feedback systems with diffusion,” J. Franklin Inst., vol. 360, no. 16, pp. 12170–12197, Nov. 2023. doi: 10.1016/j.jfranklin.2023.09.036
|
[55] |
C. Wang, X. Du, M. Xiao, H. Li, and Y. Lu, “Optimization of Pattern Dynamics of FitzHugh-Nagumo System Based on PD Control Strategy,” 36th Chinese Control and Decision Conf., pp. 2775–2780, Jul. 2024.
|
[56] |
V. E. Tarasov, “Review of some promising fractional physical models,” Int. J. Mod. Phys. B, vol. 27, no. 9, p. 1330005, Oct. 2013. doi: 10.1142/S0217979213300053
|
[57] |
D. G. Miller, “Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, solvent choices, and reference frame transformation,” J. Phys. Chem., vol. 90, no. 8, pp. 1509–1519, Apr. 1986. doi: 10.1021/j100399a010
|