Citation: | T. Chen, W. Yang, S. Li, and X. Luo, “Data-driven calibration of industrial robots: A comprehensive survey,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 8, pp. 1544–1567, Aug. 2025. doi: 10.1109/JAS.2025.125237 |
[1] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 69, no. 12, pp. 5169–5173, Dec. 2022.
|
[2] |
H. Xie, W. Li, and H. Liu, “General geometry calibration using arbitrary free-form surface in a vision-based robot system,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 5994–6003, Jun. 2022. doi: 10.1109/TIE.2021.3090716
|
[3] |
Z. Zhang, R. Dershan, A. M. S. Enayati, M. Yaghoubi, D. Richert, and H. Najjaran, “A high-fidelity simulation platform for industrial manufacturing by incorporating robotic dynamics into an industrial simulation tool,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 9123–9128, Oct. 2022. doi: 10.1109/LRA.2022.3190096
|
[4] |
D. Zhang, J. Hu, J. Cheng, Z.-G. Wu, and H. Yan, “A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 661–672, Mar. 2024. doi: 10.1109/JAS.2023.123948
|
[5] |
X. Li, W. Li, X. Yin, X. Ma, X. Yuan, and J. Zhao, “Camera-mirror binocular vision-based method for evaluating the performance of industrial robots,” IEEE Trans. Instrum. Meas., vol. 70, p. 5019214, Nov. 2021.
|
[6] |
A. Noccaro, A. Mioli, M. DÁlonzo, M. Pinardi, G. Di Pino, and D. Formica, “Development and validation of a novel calibration methodology and control approach for robot-aided transcranial magnetic stimulation (TMS),” IEEE Trans. Biomed. Eng., vol. 68, no. 5, pp. 1589–1600, May 2021. doi: 10.1109/TBME.2021.3055434
|
[7] |
A. Buerkle, W. Eaton, A. Al-Yacoub, M. Zimmer, P. Kinnell, M. Henshaw, M. Coombes, W.-H. Chen, and N. Lohse, “Towards industrial robots as a service (IRaaS): Flexibility, usability, safety and business models,” Robot. Comput. Integr.-Manuf., vol. 81, p. 102484, Jun. 2023. doi: 10.1016/j.rcim.2022.102484
|
[8] |
Z. Li, S. Li, and X. Luo, “Efficient industrial robot calibration via a novel unscented Kalman filter-incorporated variable step-size Levenberg–Marquardt algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 2510012, Apr. 2023.
|
[9] |
K. Deng, D. Gao, S. Ma, C. Zhao, and Y. Lu, “Elasto-geometrical error and gravity model calibration of an industrial robot using the same optimized configuration set,” Robot. Comput. Integr.-Manuf., vol. 83, p. 102558, Oct. 2023. doi: 10.1016/j.rcim.2023.102558
|
[10] |
J. Chen, F. Xie, X.-J. Liu, and Z. Chong, “Elasto-geometrical calibration of a hybrid mobile robot considering gravity deformation and stiffness parameter errors,” Robot. Comput. Integr.-Manuf., vol. 79, p. 102437, Feb. 2023. doi: 10.1016/j.rcim.2022.102437
|
[11] |
W. Xu, P. Yan, F. Wang, H. Yuan, and B. Liang, “Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot,” Mech. Syst. Signal Process., vol. 165, p. 108347, Feb. 2022. doi: 10.1016/j.ymssp.2021.108347
|
[12] |
T. Sun, C. Liu, B. Lian, P. Wang, and Y. Song, “Calibration for precision kinematic control of an articulated serial robot,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 6000–6009, Jul. 2021. doi: 10.1109/TIE.2020.2994890
|
[13] |
Y. Zhou, C-Y. Chen, Y. Tang, H. Wan, J. Luo, G. Yang, and C. Zhang, “A comprehensive on-load calibration method for industrial robots based on a unified kinetostatic error model and Gaussian process regression,” IEEE Trans. Instrum. Meas., vol. 73, p. 1003611, Mar. 2024.
|
[14] |
L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, and D. A. Bristow, “Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots,” Robot. Comput. Integr.-Manuf., vol. 50, pp. 153–167, Apr. 2018. doi: 10.1016/j.rcim.2017.09.006
|
[15] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
|
[16] |
Z. Liu, X. Liu, Z. Cao, X. Gong, M. Tan, and J. Yu, “High precision calibration for three-dimensional vision-guided robot system,” IEEE Trans. Ind. Electron., vol. 70, no. 1, pp. 624–634, Jan. 2023. doi: 10.1109/TIE.2022.3152026
|
[17] |
H Ye, J Wu, and T Huang, “Kinematic calibration of over-constrained robot with geometric error and internal deformation,” Mech. Mach. Theory, vol. 185, p. 105345, Jul. 2023. doi: 10.1016/j.mechmachtheory.2023.105345
|
[18] |
T. Chen, S. Li, Y. Qiao, and X. Luo, “A robust and efficient ensemble of diversified evolutionary computing algorithms for accurate robot calibration,” IEEE Trans. Instrum. Meas., vol. 73, p. 7501814, Feb. 2024.
|
[19] |
Z. Zhu, X. Tang, C. Chen. F. Peng, R. Yan, L. Zhou, Z. Li, and J. Wu, “High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends,” Robot. Comput. Integr.-Manuf., vol. 35, no. 2, pp. 22–46, Feb. 2022.
|
[20] |
A. Peters and A. C. Knoll, “Robot self-calibration using actuated 3D sensors,” J. Field Robot., vol. 41, no. 2, pp. 327–346, Mar. 2024. doi: 10.1002/rob.22259
|
[21] |
L. Wang and N. Simaan, “Geometric calibration of continuum robots: Joint space and equilibrium shape deviations,” IEEE Trans. Rob., vol. 35, no. 2, pp. 387–402, Apr. 2019. doi: 10.1109/TRO.2018.2881049
|
[22] |
Y. Liu, Z. Zhuang, and Y. Li, “Closed-loop kinematic calibration of robots using a six-point measuring device,” IEEE Trans. Instrum. Meas., vol. 71, p. 3517912, Jul. 2022.
|
[23] |
Z. Li, S. Li, and X. Luo, “A novel machine learning system for industrial robot arm calibration,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 71, no. 4, pp. 2364–2368, Apr. 2024.
|
[24] |
G. Du, Y. Liang, C. Li, P. X. Liu, and D. Li, “Online robot kinematic calibration using hybrid filter with multiple sensors,” IEEE Trans. Instrum. Meas., vol. 69, no. 9, pp. 7092–7107, Sept. 2020. doi: 10.1109/TIM.2020.2976277
|
[25] |
Y. Song, W. Tian, Y. Tian, and X. Liu, “An efficient calibration method for serial industrial robots based on kinematics decomposition and equivalent systems,” Robot. Comput. Integr.-Manuf., vol. 84, p. 102607, Dec. 2023. doi: 10.1016/j.rcim.2023.102607
|
[26] |
G. Luo, L. Zou, Z. Wang, C. Lv, J. Ou, and Y. Huang, “A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm,” Robot. Comput. Integr.-Manuf., vol. 71, p. 102165, Oct. 2021. doi: 10.1016/j.rcim.2021.102165
|
[27] |
W. Yang, S. Li, Z. Li, and X. Luo, “Highly accurate manipulator calibration via extended Kalman filter-incorporated residual neural network,” IEEE Trans. Industr. Inform., vol. 19, no. 11, pp. 10831–10841, Nov. 2023. doi: 10.1109/TII.2023.3241614
|
[28] |
Y. Shen, F. Zhang, D. Liu, W. Pu, and Q. Zhang, “Manhattan-distance IOU loss for fast and accurate bounding box regression and object detection,” Neurocomputing, vol. 500, pp. 99–114, Aug. 2022. doi: 10.1016/j.neucom.2022.05.052
|
[29] |
A. Li, C. Fan, F. Xiao, and Z. Chen, “Distance measures in building informatics: An in-depth assessment through typical tasks in building energy management,” Energy Build., vol. 258, p. 111817, Mar. 2022. doi: 10.1016/j.enbuild.2021.111817
|
[30] |
H. Yin, X. R. Li, and Y. Gao, “Relative Euclidean distance with application to TOPSIS and estimation performance ranking,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 2, pp. 1052–1064, Feb. 2022. doi: 10.1109/TSMC.2020.3017814
|
[31] |
B. Li, W. Tian, C. Zhang, F. Hua, G. Cui, and Y. Li, “Positioning error compensation of an industrial robot using neural networks and experimental study,” Chin. J. Aeronaut., vol. 35, no. 2, pp. 346–360, Feb. 2022. doi: 10.1016/j.cja.2021.03.027
|
[32] |
P. Staszewski, M. Jaworski, J. Cao, and L. Rutkowski, “A new approach to descriptors generation for image retrieval by analyzing activations of deep neural network layers,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 12, pp. 7913–7920, Dec. 2022. doi: 10.1109/TNNLS.2021.3084633
|
[33] |
B. Tao, M. Xiao, W. X. Zheng, J. Cao, and J. Tang, “Dynamics analysis and design for a bidirectional super-ring-shaped neural network with n neurons and multiple delays,” IEEE Trans. Neural Netw. Learn Syst., vol. 32, no. 7, pp. 2978–2992, Jul. 2021. doi: 10.1109/TNNLS.2020.3009166
|
[34] |
Y. Xue, Y. Tong, and F. Neri, “An ensemble of differential evolution and Adam for training feed-forward neural networks,” Inf. Sci., vol. 608, pp. 453–471, Aug. 2022. doi: 10.1016/j.ins.2022.06.036
|
[35] |
Y. Wang, Y. Peng, and T. W. S. Chow, “Adaptive particle filter-based approach for RUL prediction under uncertain varying stresses with application to HDD,” IEEE Trans. Industr. Inform., vol. 17, no. 9, pp. 6272–6281, Sept. 2021. doi: 10.1109/TII.2021.3051285
|
[36] |
K. Ampountolas, “The unscented Kalman filter for nonlinear parameter identification of adaptive cruise control systems,” IEEE Trans. Intelligent Vehicles, vol. 8, no. 8, pp. 4094–4104, Aug. 2023. doi: 10.1109/TIV.2023.3272660
|
[37] |
V. Le Nguyen and R. J. Caverly, “Cable-driven parallel robot pose estimation using extended Kalman filtering with inertial payload measurements,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3615–3622, Apr. 2021. doi: 10.1109/LRA.2021.3064502
|
[38] |
A. T. M. Fisch, I. A. Eckley, and P. Fearnhead, “Innovative and additive outlier robust Kalman filtering with a robust particle filter,” IEEE Trans. Signal Process., vol. 70, pp. 47–56, Nov. 2022. doi: 10.1109/TSP.2021.3125136
|
[39] |
M. Murata, I. Kawano, and K. Inoue, “Degeneracy-free particle filter: Ensemble Kalman smoother multiple distribution estimation filter,” IEEE Trans. Automat. Control, vol. 67, no. 12, pp. 6956–6961, Dec. 2022. doi: 10.1109/TAC.2022.3185007
|
[40] |
X. Luo, Z. Li, W. Yue, and S. Li, “A calibrator fuzzy ensemble for highly-accurate robot arm calibration,” IEEE Trans. Neural Netw. Learn Syst., vol. 36, no. 2, pp. 2169–2181, 2025. doi: 10.1109/TNNLS.2024.3354080
|
[41] |
Y. Zhang, M. Li, Y. Zhang, Z. Hu, Q. Sun, and B. Lu, “An enhanced adaptive unscented Kalman filter for vehicle state estimation,” IEEE Trans. Instrum. Meas., vol. 71, p. 6502412, Jun. 2022.
|
[42] |
C. Mishra, L. Vanfretti, and K. D. Jones, “Synchrophasor phase angle data unwrapping using an unscented Kalman filter,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4868–4871, Sept. 2021. doi: 10.1109/TPWRS.2021.3089027
|
[43] |
G. Zhang, J. Luo, H. Xu, Y. Wang, T. Wang, I. Lin, and Y. Liu, “An improved UKF algorithm for extracting weak signals based on RBF neural network,” IEEE Trans. Instrum. Meas., vol. 71, p. 6502714, Jul. 2022.
|
[44] |
Y. Yuan and W. Sun, “An integrated kinematic calibration and dynamic identification method with only static measurements for serial robot,” IEEE/ASME Trans. Mechatron., vol. 28, no. 5, pp. 2762–2773, Oct. 2023. doi: 10.1109/TMECH.2023.3241302
|
[45] |
S. Mutti and N. Pedrocchi, “Improved tracking and docking of industrial mobile robots through UKF vision-based kinematics calibration,” IEEE Access, vol. 9, pp. 127664–127671, Sept. 2021. doi: 10.1109/ACCESS.2021.3111004
|
[46] |
Z. Wang, C. Chen, and D. Dong, “Lifelong incremental reinforcement learning with online Bayesian inference,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 8, pp. 4003–4016, Aug. 2022. doi: 10.1109/TNNLS.2021.3055499
|
[47] |
X. Liang, H. Yu, P.-J. Zou, P.-L. Shui, and H.-T. Su, “Multiscan recursive Bayesian parameter estimation of large-scene spatial-temporally varying generalized Pareto distribution model of sea clutter,” IEEE Trans. Geosci. Remote Sens., vol. 60, p. 5115416, Jul. 2022.
|
[48] |
X. An, X. Cui, S. Zhao, G. Liu, and M. Lu, “Efficient rigid body localization based on Euclidean distance matrix completion for AGV positioning under harsh environment,” IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 2482–2496, Feb. 2023. doi: 10.1109/TVT.2022.3213179
|
[49] |
C. Huang, B. Su, T. Lin, and Y. Huang, “Downlink SCMA codebook design with low error rate by maximizing minimum Euclidean distance of superimposed codewords,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5231–5245, May 2022. doi: 10.1109/TVT.2022.3155627
|
[50] |
C. Mao, S. Li, Z. Chen, X. Zhang, and C. Li, “Robust kinematic calibration for improving collaboration accuracy of dual-arm manipulators with experimental validation,” Measurement, vol. 155, p. 107524, Apr. 2020. doi: 10.1016/j.measurement.2020.107524
|
[51] |
C. Mao, Z. Chen, S. Li, and X. Zhang, “Septarable nonlinear least squares algorithm for robust kinematic calibration of serial robots,” J. Intell. Robot. Syst., vol. 101, p. 1, Jan. 2021. doi: 10.1007/s10846-020-01262-5
|
[52] |
C. Zhang, S. Zhao, Z. Yang, and Y. He, “A multi-fault diagnosis method for lithium-ion battery pack using curvilinear Manhattan distance evaluation and voltage difference analysis,” J. Energy Storage, vol. 67, p. 107575, Sept. 2023. doi: 10.1016/j.est.2023.107575
|
[53] |
F. B. Sorbelli, C. M. Pinotti, and G. Rigoni, “On the Evaluation of a drone-based delivery system on a mixed Euclidean-Manhattan grid,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 1276–1287, Jan. 2023. doi: 10.1109/TITS.2022.3189948
|
[54] |
C. Wang, J. Yang, and B. Zhang, “A fault diagnosis method using improved prototypical network and weighting similarity-Manhattan distance with insufficient noisy data,” Measurement, vol. 226, p. 114171, Feb. 2024. doi: 10.1016/j.measurement.2024.114171
|
[55] |
Z. X. Jiang and M. Huang, “Stable calibrations of six-DOF serial robots by using identification models with equalized singular values,” Robotica, vol. 39, no. 12, pp. 2131–2152, Dec. 2021. doi: 10.1017/S0263574721000229
|
[56] |
M. Yoshimura, M. M. Marinho, K. Harada, and M. Mitsuishi, “Single-shot pose estimation of surgical robot instruments' shafts from monocular endoscopic images,” in Proc. IEEE Int. Conf. Robotics and Automation, Paris, France, 2020, pp. 9960−9966.
|
[57] |
Y. Zhao, N. Jiang, and X. Deng, “Novel distance measures of multigranular unbalanced hesitant fuzzy linguistic term sets based on semantics intervals,” IEEE Trans. Cybern., vol. 54, no. 4, pp. 2179–2192, Apr. 2024. doi: 10.1109/TCYB.2022.3220222
|
[58] |
J. Heller, M. Havlena, and T. Pajdla, “Globally optimal hand-eye calibration using branch-and-bound,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 5, pp. 1027–1033, May 2016. doi: 10.1109/TPAMI.2015.2469299
|
[59] |
S. Liao, Q. Zeng, K. F. Ehmann, and J. Cao, “Parameter identification and nonparametric calibration of the Tri-pyramid robot,” IEEE/ASME Trans. Mechatron., vol. 25, no. 5, pp. 2309–2317, Oct. 2020. doi: 10.1109/TMECH.2020.3001021
|
[60] |
H. Q. Cao, H. X. Nguyen, T. N.-C. Tran, H. N. Tran, and J. W. Jeon, “A robot calibration method using a neural network based on a butterfly and flower pollination algorithm,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3865–3875, Apr. 2022. doi: 10.1109/TIE.2021.3073312
|
[61] |
Y. Song, W. Tian, Y. Tian, and X. Liu, “Calibration of a Stewart platform by designing a robust joint compensator with artificial neural networks,” Precis. Eng., vol. 77, pp. 375–384, Sept. 2022. doi: 10.1016/j.precisioneng.2022.07.001
|
[62] |
H. Liu, Z. Yan, and J. Xiao, “Pose error prediction and real-time compensation of a 5-DOF hybrid robot,” Mech. Mach. Theory, vol. 170, p. 104737, Jan. 2022. doi: 10.1016/j.mechmachtheory.2022.104737
|
[63] |
M. Novak, H. Xie, T. Dragicevic, F. Wang, J. Rodriguez, and F. Blaabjerg, “Optimal cost function parameter design in predictive torque control (PTC) using artificial neural networks (ANN),” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7309–7319, Aug. 2021. doi: 10.1109/TIE.2020.3009607
|
[64] |
C. Roy, W. Lin, and K. Wu, “Swarm intelligence-homotopy hybrid optimization-based ANN model for tunable bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 6, pp. 2567–2581, Jun. 2023. doi: 10.1109/TMTT.2023.3236676
|
[65] |
A. Javaid, R. Achar, and J. N. Tripathi, “Development of knowledge-based artificial neural networks for analysis of PSIJ in CMOS inverter circuits,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 4, pp. 1428–1438, Apr. 2023. doi: 10.1109/TMTT.2022.3222181
|
[66] |
D. Shan, Y. Luo, X. Zhang, and C. Zhang, “DRRNets: Dynamic recurrent routing via low-rank regularization in recurrent neural networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 34, no. 4, pp. 2057–2067, Apr. 2023. doi: 10.1109/TNNLS.2021.3105818
|
[67] |
G. Bao, Y. Zhang, and Z. Zeng, “Memory analysis for memristors and memristive recurrent neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 96–105, Jan. 2020. doi: 10.1109/JAS.2019.1911828
|
[68] |
S. Cai and V. K. N. Lau, “Remote state estimation of nonlinear systems over fading channels via recurrent neural networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 8, pp. 3908–3922, Aug. 2022. doi: 10.1109/TNNLS.2021.3054826
|
[69] |
L.-B. Kong and Y. Yu, “Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning,” Adv. Manuf., vol. 10, no. 3, pp. 397–410, Jun. 2022. doi: 10.1007/s40436-022-00400-6
|
[70] |
N. Tan, P. Yu, S. Liao, and Z. Sun, “Recurrent neural networks as kinematics estimator and controller for redundant manipulators subject to physical constraints,” Neural Netw., vol. 153, pp. 64–75, Sept. 2022. doi: 10.1016/j.neunet.2022.05.021
|
[71] |
M. Hwang, B. Thananjeyan, S. Paradis, D. Seita, J. Ichnowski, D. Fer, T. Low, and K. Goldberg, “Efficiently calibrating cable-driven surgical robots with RGBD fiducial sensing and recurrent neural networks,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5937–5944, Oct. 2020. doi: 10.1109/LRA.2020.3010746
|
[72] |
S. Su, J. Qu, Y. Cao, R. Li, and G. Wang, “Adversarial training lattice LSTM for named entity recognition of rail fault texts,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 21201–21215, Nov. 2022. doi: 10.1109/TITS.2022.3182371
|
[73] |
H. Zheng, F. Lin, X. Feng, and Y. Chen, “A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 11, pp. 6910–6920, Nov. 2021. doi: 10.1109/TITS.2020.2997352
|
[74] |
W. Bai, F. Cursi, X. Guo, B. Huang, B. Lo, G.-Z. Yang, and E. M. Yeatman, “Task-based LSTM kinematic modeling for a tendon-driven flexible surgical robot,” IEEE Trans. Med. Robot. Bionics, vol. 4, no. 2, pp. 339–342, May 2022. doi: 10.1109/TMRB.2021.3127366
|
[75] |
J. Zhao, H. Wang, W. Liu, and H. Zhang, “A learning-based multiscale modelling approach to real-time serial manipulator kinematics simulation,” Neurocomputing, vol. 390, pp. 280–293, May 2020. doi: 10.1016/j.neucom.2019.04.101
|
[76] |
S.-B. Roh, S.-K. Oh, W. Pedrycz, Z. Wang, Z. Fu, and K. Seo, “Design of iterative fuzzy radial basis function neural networks based on iterative weighted fuzzy C-means clustering and weighted LSE estimation,” IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4273–4285, Oct. 2022. doi: 10.1109/TFUZZ.2022.3146985
|
[77] |
D. Chen, T. Wang, P. Yuan, N. Sun, and H. Tang, “A positional error compensation method for industrial robots combining error similarity and radial basis function neural network,” Meas. Sci. Technol., vol. 30, no. 12, p. 125010, Dec. 2019. doi: 10.1088/1361-6501/ab3311
|
[78] |
Y. Jiang, L. Yu, H. Jia, H. Zhao, and H. Xia, “Absolute positioning accuracy improvement in an industrial robot,” Sensors, vol. 20, no. 16, p. 4354, Aug. 2020. doi: 10.3390/s20164354
|
[79] |
S. P. Madruga, A. H. B. M. Tavares, S. O. D. Luiz, T. P. do Nascimento, and A. M. N. Lima, “Aerodynamic effects compensation on multi-rotor UAVs based on a neural network control allocation approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 295–312, Feb. 2022. doi: 10.1109/JAS.2021.1004266
|
[80] |
S. Panda and G. Panda, “On the development and performance evaluation of improved radial basis function neural networks,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 6, pp. 3873–3884, Jun. 2022. doi: 10.1109/TSMC.2021.3076747
|
[81] |
J. Hou, D. Yao, F. Wu, J. Shen, and X. Chao, “Online vehicle velocity prediction using an adaptive radial basis function neural network,” IEEE Trans. Geosci. Remote Sens., vol. 70, no. 4, pp. 3113–3122, Apr. 2021.
|
[82] |
Q. Jiang, L. Zhu, C. Shu, and V. Sekar, “Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow,” Acta Mech. Sinica, vol. 37, no. 12, pp. 1757–1772, Dec. 2021. doi: 10.1007/s10409-021-01144-5
|
[83] |
Y. Hu, H. Tang, and G. Pan, “Spiking deep residual networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 34, no. 8, pp. 5200–5205, Aug. 2023. doi: 10.1109/TNNLS.2021.3119238
|
[84] |
X. Jin, Y. Xie, X.-S. Wei, B.-R. Zhao, Y. Zhang, X. Tan, and Y. Yu, “A lightweight encoder–decoder path for deep residual networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 2, pp. 866–878, Feb. 2022. doi: 10.1109/TNNLS.2020.3029613
|
[85] |
S. Yu, D.-H. Zhai, Y. Xia, H. Wu, and J. Liao, “SE-ResUNet: A novel robotic grasp detection method,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5238–5245, Apr. 2022. doi: 10.1109/LRA.2022.3145064
|
[86] |
J. Xu, P. Zhu, Y. Zhou, and W. Ren, “Distributed invariant extended Kalman filter using lie groups: Algorithm and experiments,” IEEE Trans. Control Syst. Technol., vol. 31, no. 6, pp. 2777–2789, Nov. 2023. doi: 10.1109/TCST.2023.3290299
|
[87] |
X. Liu, Q. Li, L. Wang, M. Lin, and J. Wu, “Data-driven state of charge estimation for power battery with improved extended Kalman filter,” IEEE Trans. Instrum. Meas., vol. 72, p. 1500910, Jan. 2023.
|
[88] |
X. Li, Z. Wang, C. Zhang, D. Du, and M. Fei, “A novel dynamic watermarking-based EKF detection method for FDIAs in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1319–1322, Jul. 2022. doi: 10.1109/JAS.2022.105704
|
[89] |
F. Yin, L. Wang, W. Tian, and X. Zhang, “Kinematic calibration of a 5-DOF hybrid machining robot using an extended Kalman filter method,” Precis. Eng., vol. 79, pp. 86–93, Jan. 2023. doi: 10.1016/j.precisioneng.2022.09.007
|
[90] |
Z. Li, S. Li, and X. Luo, “Using quadratic interpolated beetle antennae search to enhance robot arm calibration accuracy,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 12046–12053, Oct. 2022. doi: 10.1109/LRA.2022.3211776
|
[91] |
B. Yan, L. Zheng, L. Cai, W. Zhang, L. Yang, and R. Yang, “An uncalibrated and accurate robotic puncture method under respiratory motion,” IEEE Sens. J., vol. 22, no. 17, pp. 17266–17274, Sept. 2022. doi: 10.1109/JSEN.2022.3193049
|
[92] |
V. Nguyen and J. Marvel, “Modeling of industrial robot kinematics using a hybrid analytical and statistical approach,” J. Mech. Robot., vol. 14, no. 5, p. 051009, Oct. 2022. doi: 10.1115/1.4053734
|
[93] |
E. Daş and J. W. Burdick, “An active learning based robot kinematic calibration framework using Gaussian processes,” in Proc. IEEE Int. Conf. Robotics and Automation, London, United Kingdom, 2023, pp. 11495−11501.
|
[94] |
J. Chen, M. Feng, D. Zhao, C. Xia, and Z. Wang, “Composite effective degree Markov chain for epidemic dynamics on higher-order networks,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 12, pp. 7415–7426, Dec. 2023. doi: 10.1109/TSMC.2023.3298019
|
[95] |
Q. Wang, H. Wu, Y. Song, H. Handroos, Y. Cheng, and G. Qin, “Parameter identification of heavy-duty manipulator using stochastic gradient Hamilton Monte Carlo method,” IEEE Access, vol. 11, pp. 78561–78583, Jul. 2023. doi: 10.1109/ACCESS.2023.3298570
|
[96] |
D. Ghose, L. Tello-Oquendo, V. Pla, and F. Y. Li, “On the behavior of synchronous data transmission in WuR enabled IoT networks: Protocol and absorbing Markov chain based modeling,” IEEE Trans. Wireless Communications, vol. 21, no. 10, pp. 8565–8580, Oct. 2022. doi: 10.1109/TWC.2022.3167115
|
[97] |
Q. Yu, C. Ma, S. Song, G. Zhang, J. Dang, and K. C. Tan, “Constructing accurate and efficient deep spiking neural networks with double-threshold and augmented schemes,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 4, pp. 1714–1726, Apr. 2022. doi: 10.1109/TNNLS.2020.3043415
|
[98] |
M. Zhang, J. Wang, J. Wu, A. Belatreche, B. Amornpaisannon, Z. Zhang, V. P. K. Miriyala, H. Qu, Y. Chua, T. E. Carlson, and H. Li, “Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 33, no. 5, pp. 1947–1958, May 2022. doi: 10.1109/TNNLS.2021.3110991
|
[99] |
K. Li and J. C. Príncipe, “Functional Bayesian filter,” IEEE Trans. Signal Process., vol. 70, pp. 57–71, Jan. 2022. doi: 10.1109/TSP.2021.3132277
|
[100] |
J. Ghibaudo, M. Aucejo, and O. De Smet, “A sparse adaptive Bayesian filter for input estimation problems,” Mech. Syst. Signal Process., vol. 180, p. 109416, Nov. 2022. doi: 10.1016/j.ymssp.2022.109416
|
[101] |
H. Geng, Z. Wang, L. Zou, A. Mousavi, and Y. Cheng, “Protocol-based Tobit Kalman filter under integral measurements and probabilistic sensor failures,” IEEE Trans. Signal Process., vol. 69, pp. 546–559, Jan. 2021. doi: 10.1109/TSP.2020.3048245
|
[102] |
H. Geng, Z. Wang, F. E. Alsaadi, K. H. Alharbi, and Y. Cheng, “Federated Tobit Kalman filtering fusion with dead-zone-like censoring and dynamical bias under the round-robin protocol,” IEEE Trans. Signal Inf. Process. Netw., vol. 7, pp. 1–16, Jan. 2021.
|
[103] |
M. Diehl and K. Ramirez-Amaro, “Generating and transferring priors for causal Bayesian network parameter estimation in robotic tasks,” IEEE Robot. Autom. Lett., vol. 9, no. 2, pp. 1011–1018, Feb. 2024. doi: 10.1109/LRA.2023.3339062
|
[104] |
Q. Ye, A. A. Amini, and Q. Zhou, “Optimizing regularized Cholesky score for order-based learning of Bayesian networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3555–3572, Oct. 2021. doi: 10.1109/TPAMI.2020.2990820
|
[105] |
Z. Xu, D. Shen, Y. Kou, and T. Nie, “A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification,” IEEE Trans. Neural Netw. Learn Syst., vol. 35, no. 3, pp. 3740–3753, Mar. 2024. doi: 10.1109/TNNLS.2022.3197156
|
[106] |
B. P. Davis and W. D. Blair, “Efficient Gaussian mixture modeling of long-range 2-D radar measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 2, pp. 1935–1945, Apr. 2023.
|
[107] |
K. Zhu, C. Yu, and Y. Wan, “Recursive least squares identification with variable-direction forgetting via oblique projection decomposition,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 547–555, Mar. 2022. doi: 10.1109/JAS.2021.1004362
|
[108] |
C. Lyons, R. G. Raj, and M. Cheney, “A compound Gaussian least squares algorithm and unrolled network for linear inverse problems,” IEEE Trans. Signal Process., vol. 71, pp. 4303–4316, Nov. 2023. doi: 10.1109/TSP.2023.3330267
|
[109] |
A. Alamdar, P. Samandi, S. Hanifeh, P. Kheradmand, A. Mirbagheri, F. Farahmand, and S. Sarkar, “Investigation of a hybrid kinematic calibration method for the “Sina” surgical robot,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5276–5282, Oct. 2020. doi: 10.1109/LRA.2020.3007466
|
[110] |
H. Ye, J. Wu, and D. Wang, “A general approach for geometric error modeling of over-constrained hybrid robot,” Mech. Mach. Theory, vol. 176, p. 104998, Oct. 2022. doi: 10.1016/j.mechmachtheory.2022.104998
|
[111] |
J. Kwon, K. Choi, and F. C. Park, “Kinodynamic model identification: A unified geometric approach,” IEEE Trans. Rob., vol. 37, no. 4, pp. 1100–1114, Aug. 2021. doi: 10.1109/TRO.2020.3047515
|
[112] |
Y. Deng, X. Hou, B. Li, J. Wang, and Y Zhang, “A novel method for improving optical component smoothing quality in robotic smoothing systems by compensating path errors,” Opt. Express, vol. 31, no. 19, pp. 30359–30378, Sept. 2023. doi: 10.1364/OE.497093
|
[113] |
J. Luo, S. Chen, X. Fan, C. Xiong, T. Zheng, and C. Zhang, “Kinematic calibration of a 4PPa-2PaR parallel mechanism with subchains on limbs,” IEEE Trans. Instrum. Meas., vol. 71, p. 7502011, Mar. 2022.
|
[114] |
L. Miao, Y. Zhang, Z. Song, Y. Guo, W. Zhu, and Y. Ke, “A two-step method for kinematic parameters calibration based on complete pose measurement-Verification on a heavy-duty robot,” Robot. Comput. Integr.-Manuf., vol. 83, p. 102550, Oct. 2023. doi: 10.1016/j.rcim.2023.102550
|
[115] |
Y. Luo, J. Gao, L. Zhang, D. Chen, and X. Chen, “Kinematic calibration of a symmetric parallel kinematic machine using sensitivity-based iterative planning,” Precis. Eng., vol. 77, pp. 164–178, Sept. 2022. doi: 10.1016/j.precisioneng.2022.05.007
|
[116] |
F. Li, Q. Zeng, K. F. Ehmann, J. Cao, and T. Li, “A calibration method for overconstrained spatial translational parallel manipulators,” Robot. Comput. Integr.-Manuf., vol. 57, pp. 241–254, Jun. 2019. doi: 10.1016/j.rcim.2018.12.002
|
[117] |
M. Russo and X. Dong, “A calibration procedure for reconfigurable Gough-Stewart manipulators,” Mech. Mach. Theory, vol. 152, p. 103920, Oct. 2020. doi: 10.1016/j.mechmachtheory.2020.103920
|
[118] |
M. Zanon, “A Gauss–Newton-like hessian approximation for economic NMPC,” IEEE Trans. Automat. Control, vol. 66, no. 9, pp. 4206–4213, Sept. 2021. doi: 10.1109/TAC.2020.3034868
|
[119] |
I. Džafić, R. A. Jabr, and T. Hrnjić, “A complex variable perturbed Gauss-Newton method for tracking mode state estimation,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2594–2602, May 2021. doi: 10.1109/TPWRS.2020.3034371
|
[120] |
X. Li, W. Jiang, Z. Luo, L. Yang, B. Guo, and X. Hu, “Calibration of a manipulator with a regularized parameter identification method,” IEEE Access, vol. 10, pp. 90535–90547, 2022. doi: 10.1109/ACCESS.2022.3201818
|
[121] |
H. Han, H. Zhou, Y. Huang, and Y. Hou, “Robust multiobjective particle swarm optimization with feedback compensation strategy,” IEEE Trans. Cybern., vol. 54, no. 2, pp. 1062–1074, Feb. 2024. doi: 10.1109/TCYB.2023.3336870
|
[122] |
G. Ma, Z. Wang, W. Liu, J. Fang, Y. Zhang, H. Ding, and Y. Yuan, “Estimating the state of health for lithium-ion batteries: A particle swarm optimization-assisted deep domain adaptation approach,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1530–1543, Jul. 2023. doi: 10.1109/JAS.2023.123531
|
[123] |
W u, C. Song, J. Ma, J. Wu, and G. Han, “Reinforcement learning and particle swarm optimization supporting real-time rescue assignments for multiple autonomous underwater vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6807–6820, Jul. 2022. doi: 10.1109/TITS.2021.3062500
|
[124] |
W. Feng, W. Zhang, and S. Huang, “A novel parameter estimation method for PMSM by using chaotic particle swarm optimization with dynamic self-optimization,” IEEE Trans. Geosci. Remote Sens., vol. 72, no. 7, pp. 8424–8432, Jul. 2023.
|
[125] |
J. Yan, B. Pan, and Y. Fu, “Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization,” Front. Mech. Eng., vol. 17, no. 1, p. 3, Mar. 2022. doi: 10.1007/s11465-021-0659-x
|
[126] |
X. Xu, Y. Bai, M. Zhao, J. Yang, F. Pang, Y. Ran, Z. Tan, and M. Luo, “A novel calibration method for robot kinematic parameters based on improved manta ray foraging optimization algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 7501611, Jan. 2023.
|
[127] |
Y. Yu, Z. Lei, Y. Wang, T. Zhang, C. Peng, and S. Gao, “Improving dendritic neuron model with dynamic scale-free network-based differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 99–110, Jan. 2022. doi: 10.1109/JAS.2021.1004284
|
[128] |
H. Zhang, J. Sun, K. C. Tan, and Z. Xu, “Learning adaptive differential evolution by natural evolution strategies,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 3, pp. 872–886, Jun. 2023. doi: 10.1109/TETCI.2022.3210927
|
[129] |
S. Yu, Y. Wang, J. Li, X. Fang, J. Chen, Z. Zheng, and C. Fu, “An improved differential evolution framework using network topology information for critical nodes detection,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 2, pp. 448–457, Apr. 2023. doi: 10.1109/TCSS.2022.3217071
|
[130] |
R. Liu, Z. Liang, Z. Wang, and W. Li, “Indoor visible light positioning based on improved whale optimization method with min-max algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 2504910, Jan. 2023.
|
[131] |
R. Liu, Z. Liang, Z. Wang, and W. Li, “Indoor visible light positioning based on improved whale optimization method with min-max algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 2504910, Jan. 2023.
|
[132] |
M. Liu, J. Li, H. Sun, X. Guo, B. Xuan, L. Ma, Y. Xu, T. Ma, Q. Ding, and B. An, “Study on the modeling and compensation method of pose error analysis for the fracture reduction robot,” Micromachines, vol. 13, no. 8, p. 1186, Jul. 2022. doi: 10.3390/mi13081186
|
[133] |
B. Zhang, S. Chen, S. Gao, Z. Gao, D. Wang, and X. Zhang, “Combination balance correction of grinding disk based on improved quantum genetic algorithm,” IEEE Trans. Instrum. Meas., vol. 72, p. 1000112, Dec. 2023.
|
[134] |
Y. Song, M. Liu, B. Lian, Y. Qi, Y. Wang, J. Wu, and Q. Li, “Industrial serial robot calibration considering geometric and deformation errors,” Robot. Comput. Integr.-Manuf., vol. 76, p. 102328, Mar. 2022. doi: 10.1016/j.rcim.2022.102328
|
[135] |
Y. Yan, “Error recognition of robot kinematics parameters based on genetic algorithms,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 12, pp. 6167–6176, Dec. 2020. doi: 10.1007/s12652-020-01781-x
|
[136] |
P. Huang, Y. Gu, H. Li, M. Yazdi, and G. Qiu, “An optimal tolerance design approach of robot manipulators for positioning accuracy reliability,” Reliab. Eng. Syst. Saf., vol. 237, p. 109347, Sept. 2023. doi: 10.1016/j.ress.2023.109347
|
[137] |
X. Jiang and S. Li, “Beetle antennae search without parameter tuning (BAS-WPT) for multi-objective optimization,” arXiv preprint arXiv: 1711.02395, 2017.
|
[138] |
T. Wang, L. Yang, and Q. Liu, “Beetle swarm optimization algorithm: Theory and application,” Filomat, vol. 34, no. 15, pp. 5121–5137, 2020. doi: 10.2298/FIL2015121W
|
[139] |
X. Chen and Q. Zhan, “The kinematic calibration of an industrial robot with an improved beetle swarm optimization algorithm,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4694–4701, Apr. 2022. doi: 10.1109/LRA.2022.3151610
|
[140] |
Y. Wang, Z. Chen, H. Zu, X. Zhang, C. Mao, and Z. Wang, “Improvement of heavy load robot positioning accuracy by combining a model-based identification for geometric parameters and an optimized neural network for the compensation of nongeometric errors,” Complexity, vol. 2020, no. 1, p. 5896813, Jan. 2020.
|
[141] |
Y. Yuan and W. Sun, “An integrated kinematic calibration and dynamic identification method with only static measurements for serial robot,” IEEE/ASME Trans. Mechatron., vol. 28, no. 5, pp. 2762–2773, Oct. 2023. doi: 10.1109/TMECH.2023.3241302
|
[142] |
Mirabella, P. D. Viesti, A. Davoli, and G. M. Vitetta, “An Approximate maximum likelihood method for the joint estimation of range and doppler of multiple targets in OFDM-based radar systems,” IEEE Trans. Communications, vol. 71, no. 8, pp. 4862–4876, Aug. 2023. doi: 10.1109/TCOMM.2023.3280562
|
[143] |
D. Tubail, B. Ceniklioglu, A. E. Canbilen, I. Develi, and S. S. Ikki, “The effect of hardware impairments on the error bounds of localization and maximum likelihood estimation of mm-wave MISO-OFDM systems,” IEEE Trans. Geosci. Remote Sens., vol. 72, no. 3, pp. 4063–4067, Mar. 2023.
|
[144] |
Y. Mo, T. Lai, Q. Wang, and H. Huang, “A novel methodology for D-GBSAR repositioning error compensation based on maximum likelihood estimation,” IEEE Trans. Geosci. Remote Sens., vol. 62, p. 5204813, 2024.
|
[145] |
M. Busch, F. Schnoes, A. Elsharkawy, and Mi. F. Zaeh, “Methodology for model-based uncertainty quantification of the vibrational properties of machining robots,” Robot. Comput. Integr.-Manuf., vol. 73, p. 102243, Feb. 2022. doi: 10.1016/j.rcim.2021.102243
|
[146] |
Q. Lu, K. D. Polyzos, B. Li, and G. B. Giannakis, “Surrogate modeling for Bayesian optimization beyond a single Gaussian process,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 9, pp. 11283–11296, 1, Sept. 2023. doi: 10.1109/TPAMI.2023.3264741
|
[147] |
R. Chen, J. Yu, Z. Zhao, Y. Li, J. Fu, and T. Chai, “Multiobjective Bayesian optimization for aeroengine using multiple information sources,” IEEE Trans. Industr. Inform., vol. 19, no. 11, pp. 11343–11352, Nov. 2023. doi: 10.1109/TII.2023.3245687
|
[148] |
Chakrabarty, S. A. Bortoff, and C. R. Laughman, “Simulation failure-robust Bayesian optimization for data-driven parameter estimation,” in IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 5, pp. 2629−2640, May 2023.
|
[149] |
H. Wan, S. Chen, Y. Liu, C. Jin, F. Chen, J. Wang, C. Zhang, and G. Yang, “A hybrid analytical and data-driven modeling approach for calibration of heavy-duty Cartesian robot,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Boston, MA, USA, 2020, pp. 1286−1291.
|
[150] |
H. Chen, Z. Teng, Z. Guo, and P. Zhao, “An integrated target acquisition approach and graphical user interface tool for parallel manipulator assembly,” J. Comput. Inf. Sci. Eng., vol. 20, no. 2, p. 021006, Apr. 2020. doi: 10.1115/1.4045411
|
[151] |
X. Luo, F. Xie, X. Liu, and Z. Xie, “Kinematic calibration of a 5-axis parallel machining robot based on dimensionless error mapping matrix,” Robot. Comput. Integr.-Manuf., vol. 70, p. 102115, Feb. 2021. doi: 10.1016/j.rcim.2021.102115
|
[152] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Netw. Learn Syst., vol. 34, no. 11, pp. 8778–8790, Nov. 2023. doi: 10.1109/TNNLS.2022.3153039
|
[153] |
D. Zhang, Z. Wang, and T. Masayoshi, “Neural-network-based iterative learning control for multiple tasks,” IEEE Trans. Neural Netw. Learn Syst., vol. 32, no. 9, pp. 4178–4190, Sept. 2021. doi: 10.1109/TNNLS.2020.3017158
|
[154] |
J. Xia, C. Song, D. Huang, X. Xing, L. Ma, and Y. Li, “Waypoints updating based on Adam and ILC for path learning in physical human-robot interaction,” in Proc. IEEE Int. Conf. Robotics and Automation, Xi’an, China, 2021, pp. 3359−3365.
|
[155] |
Y. M. Zhao, Y. Lin, F. Xi, and S. Guo, “Calibration-based iterative learning control for path tracking of industrial robots,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2921–2929, May 2015. doi: 10.1109/TIE.2014.2364800
|
[156] |
J. Bolder, S. Kleinendorst, and T. Oomen, “Data-driven multivariable ILC: Enhanced performance by eliminating L and Q filters,” Int. J. Robust Nonlinear Control, vol. 28, no. 12, pp. 3728–3751, Aug. 2018. doi: 10.1002/rnc.3611
|
[157] |
D. Kato, K. Yoshitsugu, N. Maeda, T. Hirogaki, E. Aoyama, and K. Takahashi, “Positioning error calibration of industrial robots based on random forest,” Int. J. Autom. Technol., vol. 15, no. 5, pp. 581–589, Sept. 2021. doi: 10.20965/ijat.2021.p0581
|
[158] |
F. Campisano, A. A. Remirez, S. Caló, J. H. Chandler, K. L. Obstein, R. J. Webster, and P. Valdastri, “Online disturbance estimation for improving kinematic accuracy in continuum manipulators,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2642–2649, Apr. 2020. doi: 10.1109/LRA.2020.2972880
|
[159] |
Y. Tian, H. Chen, H. Ma, X. Zhang, K. C. Tan, and Y. Jin, “Integrating conjugate gradients into evolutionary algorithms for large-scale continuous multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1801–1817, Oct. 2022. doi: 10.1109/JAS.2022.105875
|
[160] |
J. O. Vargas and R. Adriano, “Subspace-based conjugate-gradient method for solving inverse scattering problems,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 12139–12146, Dec. 2022. doi: 10.1109/TAP.2022.3211738
|
[161] |
S. Zhao, W. Wang, Z. Du, J. Chen, and Z. Duan, “A black-box adversarial attack method via Nesterov Accelerated Gradient and rewiring towards attacking graph neural networks,” IEEE Trans. Big Data, vol. 9, no. 6, pp. 1586–1597, Dec. 2023. doi: 10.1109/TBDATA.2023.3296936
|
[162] |
X. Luo, Y. Zhou, Z. Liu, L. Hu, and M. Zhou, “Generalized Nesterov’s acceleration-incorporated, non-negative and adaptive latent factor analysis,” IEEE Trans. Serv. Comput., vol. 15, no. 5, pp. 2809–2823, 2022. doi: 10.1109/TSC.2021.3069108
|
[163] |
H. Iiduka, “Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13250–13261, Dec. 2022. doi: 10.1109/TCYB.2021.3107415
|
[164] |
K. H. Lee, S. G. Baek, H. J. Lee, S. H. Lee, and J. C. Koo, “Real-time adaptive impedance compensator using simultaneous perturbation stochastic approximation for enhanced physical human-robot interaction transparency,” Rob. Auton. Syst., vol. 147, p. 103916, Jan. 2022. doi: 10.1016/j.robot.2021.103916
|
[165] |
A. Mahdy, H. M. Hasanien, W. H. A. Hameed, R. A. Turky, S. H. E. A. Aleem, and E. A. Ebrahim, “Nonlinear modeling and real-time simulation of a grid-connected AWS wave energy conversion system,” IEEE Trans. Sustain. Energy, vol. 13, no. 3, pp. 1744–1755, Jul. 2022. doi: 10.1109/TSTE.2022.3174176
|
[166] |
Y. Sun, X. Wang, Q. Lin, J. Shan, S. Jia, and W. Ye, “A high-accuracy positioning method for mobile robotic grasping with monocular vision and long-distance deviation,” Measurement, vol. 215, p. 112829, Jun. 2023. doi: 10.1016/j.measurement.2023.112829
|
[167] |
C. Landgraf, K. Ernst, and G. Schleth, M. Fabritius, and M. F. Huber, “A hybrid neural network approach for increasing the absolute accuracy of industrial robots,” in Proc. IEEE 17th Int. Conf. Automation Science and Engineering, Lyon, France, 2021, pp. 468−474.
|
[168] |
Y. Guo, B. Song, X. Tang, X. Zhou, and Z. Jiang, “A calibration method of non-contact R-test for error measurement of industrial robots,” Measurement, vol. 173, p. 108365, Feb. 2021. doi: 10.1016/j.measurement.2020.108365
|
[169] |
X. Deng, L. Ge, R. Li, and Z. Liu, “Research on the kinematic parameter calibration method of industrial robot based on LM and PF algorithm,” in Proc. Chinese Control and Decision Conf., Hefei, China, 2020, pp. 2198−2203.
|
[170] |
Y. Deng, X. Hou, B. Li, J. Wang, and Y. Zhang, “A highly powerful calibration method for robotic smoothing system calibration via using adaptive residual extended Kalman filter,” Robot. Comput. Integr.-Manuf., vol. 86, p. 102660, Jan. 2024. doi: 10.1016/j.rcim.2023.102660
|
[171] |
W. Wang, B. Pan, Y. Ai, Y. Fu, G. Li, and Y. Liu, “Ultrasound-guide prostate biopsy robot and calibration based on dynamic kinematic error model with POE formula,” Robot. Comput. Integr.-Manuf., vol. 166, p. 104465, Aug. 2023.
|
[172] |
C. Yang, W. Ye, and Q. Li, “Review of the performance optimization of parallel manipulators,” Mech. Mach. Theory, vol. 170, p. 104725, Jan. 2022. doi: 10.1016/j.mechmachtheory.2022.104725
|
[173] |
L. Yan, T. Stouraitis, and S. Vijayakumar, “Decentralized ability-aware adaptive control for multi-robot collaborative manipulation,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2311–2318, Apr. 2021. doi: 10.1109/LRA.2021.3060379
|
[174] |
T. Petrič and L. Žlajpah, “Kinematic model calibration of a collaborative redundant robot using a closed kinematic chain,” Sci. Rep., vol. 13, no. 1, p. 17804, Oct. 2023. doi: 10.1038/s41598-023-45156-6
|
[175] |
J. He, L. Gu, G. Yang, Y. Feng, S. Chen, and Z. Fang, “A local POE-based self-calibration method using position and distance constraints for collaborative robots,” Robot. Comput. Integr.-Manuf., vol. 86, p. 102685, Jan. 2024. doi: 10.1016/j.rcim.2023.102685
|
[176] |
E. Almanzor, F. Ye, J. Shi, T. G. Thuruthel, H. A. Wurdemann, and F. Iida, “Static shape control of soft continuum robots using deep visual inverse kinematic models,” IEEE Trans. Rob., vol. 39, no. 4, pp. 2973–2988, Aug. 2023. doi: 10.1109/TRO.2023.3275375
|
[177] |
K. Nuelle, T. Sterneck, S. Lilge, D. Xiong, J. Burgner-Kahrs, and T. Ortmaier, “Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5811–5818, Oct. 2020. doi: 10.1109/LRA.2020.3010213
|
[178] |
K. Liu, L. Song, W. Han, Y. Cui, and Y. Wang, “Time-varying error prediction and compensation for movement axis of CNC machine tool based on digital twin,” IEEE Trans. Industr. Inform., vol. 18, no. 1, pp. 109–118, Jan. 2022. doi: 10.1109/TII.2021.3073649
|
[179] |
D. Tohl, M. N. Teferra, A. Wallace, A. T. T. Pham, and Y. Tang, “Re-referencing and calibration for robust ratiometric light intensity measurement,” IEEE Trans. Instrum. Meas., vol. 71, p. 4505208, 2022.
|
[180] |
S. Sharma and S. DÁmico, “Neural network-based pose estimation for noncooperative spacecraft rendezvous,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4638–4658, Dec. 2020. doi: 10.1109/TAES.2020.2999148
|
[181] |
Y. Yang, V. A. Kelkar, H. S. Rajput, A. C. Salazar Coariti, K. C. Toussaint Jr, and C. Shao, “Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications,” J. Manuf. Process., vol. 76, pp. 841–849, Apr. 2022. doi: 10.1016/j.jmapro.2022.02.046
|
[182] |
W. Long, S. Cai, J. Jiao, M. Xu, and T. Wu, “A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models,” Energy Convers. Manag., vol. 203, p. 112243, Jan. 2020. doi: 10.1016/j.enconman.2019.112243
|
[183] |
X. Luo, J. Chen, Y. Yuan, and Z. Wang, “Pseudo gradient-adjusted particle swarm optimization for accurate adaptive latent factor analysis,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 54, no. 4, pp. 2213–2226, Apr. 2024. doi: 10.1109/TSMC.2023.3340919
|
[184] |
Y. Wang, Z. Zhang, J. Ma, and Q. Jin, “KFRNN: An effective false data injection attack detection in smart grid based on Kalman filter and recurrent neural network,” IEEE Internet Things J., vol. 9, no. 9, pp. 6893–6904, May 2022. doi: 10.1109/JIOT.2021.3113900
|
[185] |
Y. Zhang, W. Liang, M. Yuan, H. He, J. Tan, and Z. Pang, “Monocular visual-inertial and robotic-arm calibration in a unifying framework,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 146–159, Jan. 2022. doi: 10.1109/JAS.2021.1004290
|
[186] |
J. Dong, J. Xu, Q. Zhou, J. Zhu, and L. Yu, “Dynamic identification of industrial robot based on nonlinear friction model and LS-SOS algorithm,” IEEE Trans. Instrum. Meas., vol. 70, p. 7504512, Oct. 2021.
|
[187] |
Y. Huang, J. Ke, X. Zhang, and J. Ota, “Dynamic parameter identification of serial robots using a hybrid approach,” IEEE Trans. Rob., vol. 39, no. 2, pp. 1607–1621, Apr. 2023. doi: 10.1109/TRO.2022.3211194
|