Citation: | Y. Pan, T. Shi, W. Li, B. Xu, and C. Ahn, “Robot impedance iterative learning with sparse online Gaussian process,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2025.125195 |
[1] |
E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati, “Human-robot collaboration in manufacturing applications: A review,” Robot., vol. 8, no. 4, p. 100, Dec. 2019. doi: 10.3390/robotics8040100
|
[2] |
G. Kang, H. S. Oh, J. K. Seo, U. Kim, and H. R. Choi, “Variable admittance control of robot manipulators based on human intention,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1023–1032, Jun. 2019. doi: 10.1109/TMECH.2019.2910237
|
[3] |
C. Ott, R. Mukherjee, and Y. Nakamura, “A hybrid system framework for unified impedance and admittance control,” J. Intell. Robot. Syst., vol. 78, no. 3–4, pp. 359–375, Jul. 2015. doi: 10.1007/s10846-014-0082-1
|
[4] |
M. Sharifi, A. Zakerimanesh, J. K. Mehr, A. Torabi, V. K. Mushahwar, and M. Tavakoli, “Impedance variation and learning strategies in human-robot interaction,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6462–6475, Jul. 2022. doi: 10.1109/TCYB.2020.3043798
|
[5] |
N. Nikooienejad, M. Maroufi, and S. O. Reza Moheimani, “A survey of iterative learning control: A learning-based method for high-performance tracking control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114, Jun. 2006. doi: 10.1109/MCS.2006.1636313
|
[6] |
Y. Li and S. S. Ge, “Impedance learning for robots interacting with unknown environments,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1422–1432, Jul. 2014. doi: 10.1109/TCST.2013.2286194
|
[7] |
S. Riaz, L. Hui, M. S. Aldemir, and F. Afzal, “A future concern of iterative learning control: A survey,” J. Stat. Manag. Syst., vol. 24, no. 6, pp. 1301–1322, Apr. 2021.
|
[8] |
D. Zhang, Z. Wang, and T. Masayoshi, “Neural-network-based iterative learning control for multiple tasks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 4178–4190, Sep. 2020.
|
[9] |
L. Rath, A. R. Geist, and S. Trimpe, “Using physics knowledge for learning rigid-body forward dynamics with Gaussian process force priors,” in Proc. Conf. Robot Learn., London, UK, 2021, pp. 101–111.
|
[10] |
J. Lee, J. Feng, M. Humt, M. G. Müller, and R. Triebel, “Trust your robots! predictive uncertainty estimation of neural networks with sparse Gaussian processes,” in Proc. Conf. Robot Learn., London, UK, 2021, pp. 1168–1179.
|
[11] |
H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets big data: A review of scalable GPs,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4405–4423, Nov. 2020. doi: 10.1109/TNNLS.2019.2957109
|
[12] |
L. Csato and M. Opper, “Sparse on-line Gaussian processes,” Neural Comput., vol. 14, no. 3, pp. 641–668, Mar. 2002. doi: 10.1162/089976602317250933
|
[13] |
J. S. De La Cruz, W. Owen, and D. Kulic, “Online learning of inverse dynamics via Gaussian process regression,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura, Algarve, Portugal, 2012, pp. 3583–3590.
|
[14] |
L. Deng, W. Li, and Y. Pan, “Data-efficient Gaussian process online learning for adaptive control of multi-DoF robotic arms,” IFAC-PapersOnLine, vol. 55, no. 2, pp. 84–89, 2022. doi: 10.1016/j.ifacol.2022.04.174
|
[15] |
R.-E. Precup, S. Preitl, J. K. Tar, M. L. Tomescu, M. Takacs, P. Korondi, x and P. Baranyi, “Fuzzy control system performance enhancement by iterative learning control,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3461–3475, Sep. 2008. doi: 10.1109/TIE.2008.925322
|
[16] |
J. Wang, Y. Gao, Y. Gao, J. Liu, G. Sun, and L. Wu, “Intelligent dynamic practical-sliding-mode control for singular markovian jump systems,” Inf. Sci., vol. 607, pp. 153–172, Aug. 2022. doi: 10.1016/j.ins.2022.05.059
|
[17] |
I. A. Zamfirache, R.-E. Precup, R.-C. Roman, and E. M. Petriu, “Neural network-based control using actor-critic reinforcement learning and grey Wolf optimizer with experimental servo system validation,” Expert Syst. Appl., vol. 225, Art. no. 120112, Sep. 2023.
|
[18] |
F. Dimeas and N. Aspragathos, “Fuzzy learning variable admittance control for human-robot cooperation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Chicago, IL, USA, 2014, pp. 4770–4775.
|
[19] |
A.-N. Sharkawy, P. N. Koustournpardis, and N. Aspragathos, “Variable admittance control for human-robot collaboration based on online neural network training,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Madrid, Spain, 2018, pp. 1334–1339.
|
[20] |
A.-N. Sharkawy, P. Koustoumpardis, and N. Aspragathos, “A neural network-based approach for variable admittance control in human-robot cooperation: online adjustment of the virtual inertia,” Intel. Serv. Robotics, vol. 13, pp. 495–519, Aug. 2020. doi: 10.1007/s11370-020-00337-4
|
[21] |
X. Yu, W. He, Y. Li, C. Xue, J. Li, J. Zou, and C. Yang, “Bayesian estimation of human impedance and motion intention for human-robot collaboration,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1822–1834, Apr. 2021. doi: 10.1109/TCYB.2019.2940276
|
[22] |
C. Li, Z. Zhang, G. Xia, X. Xie, and Q. Zhu, “Efficient learning variable impedance control for industrial robots,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, p. 2, Apr. 2019.
|
[23] |
L. Deng, Z. Li, and Y. Pan, “Sparse online Gaussian process impedance learning for multi-DoF robotic arms,” in Proc. IEEE Int. Conf. Adv. Robot. Mechatron., Chongqing, China, 2021, pp. 199–206.
|
[24] |
C. Wang, Y. Li, S. S. Ge, and T. H. Lee, “Reference adaptation for robots in physical interactions with unknown environments,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3504–3515, Nov. 2017. doi: 10.1109/TCYB.2016.2562698
|
[25] |
T. Yamawaki, H. Ishikawa, and M. Yashima, “Iterative learning of variable impedance control for human-robot cooperation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Daejeon, South Korea, 2016, pp. 839–844.
|
[26] |
A. Kramberger, E. Shahriari, A. Gams, B. Nemec, A. Ude, and S. Haddadin, “Passivity based iterative learning of admittance-coupled dynamic movement primitives for interaction with changing environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Madrid, Spain, 2018, pp. 6023–6028.
|
[27] |
X. Li, Y.-H. Liu, and H. Yu, “Iterative learning impedance control for rehabilitation robots driven by series elastic actuators,” Automatica, vol. 90, pp. 1–7, Apr. 2018. doi: 10.1016/j.automatica.2017.12.031
|
[28] |
K. Dupree, C.-H. Liang, G. Hu, and W. E. Dixon, “Adaptive lyapunov-based control of a robot and mass-spring system undergoing an impact collision,” IEEE Trans. Syst. Man Cybern. B, vol. 38, no. 4, pp. 1050–1061, Aug. 2008. doi: 10.1109/TSMCB.2008.923154
|
[29] |
J. E. Colgate and N. Hogan, “Robust control of dynamically interacting systems,” Int. J. Control, vol. 48, no. 1, pp. 65–88, Oct. 1988. doi: 10.1080/00207178808906161
|
[30] |
F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control of redundant manipulators for intuitive human-robot physical interaction,” IEEE Trans. Robot., vol. 31, no. 4, pp. 850–863, Aug. 2015. doi: 10.1109/TRO.2015.2430053
|
[31] |
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MA, USA: MIT press, 2006.
|
[32] |
B. Wilcox and M. C. Yip, “SOLAR-GP: Sparse online locally adaptive regression using Gaussian processes for Bayesian robot model learning and control,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2832–2839, Apr. 2020. doi: 10.1109/LRA.2020.2974432
|
[33] |
X. Li, Y. Pan, G. Chen, and H. Yu, “Adaptive human-robot interaction control for robots driven by series elastic actuators,” IEEE Trans. Robot., vol. 33, no. 1, pp. 169–182, Feb. 2017. doi: 10.1109/TRO.2016.2626479
|
[34] |
T. Sun, L. Peng, L. Cheng, Z.-G. Hou, and Y. Pan, “Stability-guaranteed variable impedance control of robots based on approximate dynamic inversion,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 7, pp. 4193–4200, Jul. 2019.
|
[35] |
F. J. Abu-Dakka and M. Saveriano, “Variable impedance control and learning-A review,” Front. Robot. AI, vol. 7, p. 177, Dec. 2020.
|
[36] |
W. Li, Z. Li, Y. Liu, and Y. Pan, “Learning inverse robot dynamics using sparse online Gaussian process with forgetting mechanism,” in Proc. IEEE Int. Conf. Adv. Intell. Mechatronics, Sapporo, Japan, 2022, pp. 638–643.
|
[37] |
C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4147–4154, Oct. 2019. doi: 10.1109/LRA.2019.2931248
|
[38] |
Y. Xie, X. Zhang, S. Zheng, C. K. Ahn, and S. Wang, “Asynchronous H∞ continuous stabilization of mode-dependent wwitched mobile robot,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 52, pp. 6906–6920, Nov. 2022. doi: 10.1109/TSMC.2021.3119054
|
[39] |
S.-K. Kim, C. K. Ahn, and R. K. Agarwal, “Position-tracking controller for two-wheeled balancing robot applications using invariant dynamic surface,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 2, pp. 705–711, Feb. 2021. doi: 10.1109/TSMC.2018.2882868
|
[40] |
M.-G. Unguritu and T.-C. Nichiţelea, “Design and assessment of an anti-lock braking system controller,” Roman. J. Inf. Sci. Technol., vol. 26, no. 1, pp. 21–32, 2023.
|