A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q.-G. Wang and L. Zhang, “System identification in the network era: A survey of data issues and innovative approaches,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125109
Citation: Q.-G. Wang and L. Zhang, “System identification in the network era: A survey of data issues and innovative approaches,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125109

System Identification in the Network Era: A Survey of Data Issues and Innovative Approaches

doi: 10.1109/JAS.2024.125109
Funds:  This work was supported in part by the National Natural Science Foundation of China (62373060), the BNU Talent seed fund, and the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)
More Information
  • System identification is a data-driven modeling technique that originates from the control field. It constructs models from data to mimic the behavior of dynamic systems. However, in the network era, scenarios such as sensor malfunctions, packet loss, cyber-attacks, and big data affect the quality, integrity, and security of the data. These data issues pose significant challenges to traditional system identification methods. This paper presents a comprehensive survey of the emergent challenges and advances in system identification in the network era. It explores cutting-edge methodologies to address data issues such as data loss, outliers, noise and nonlinear system identification for complex systems. To tackle the data loss, the methods based on imputation and likelihood-based inference (e.g., expectation maximization) have been employed. For outliers and noise, methods like robust regression (e.g., least median of squares, least trimmed squares) and low-rank matrix decomposition show progress in maintaining data integrity. Nonlinear system identification has advanced through kernel-based methods and neural networks, which can model complex data patterns. Finally, this paper provides valuable insights into potential directions for future research.

     

  • loading
  • [1]
    L. Zadeh, “On the Identification Problem,” IRE Trans. Circuit Theory, vol. 3, no. 4, pp. 277–281, Dec. 1956. doi: 10.1109/TCT.1956.1086328
    [2]
    L. Ljung, “Perspectives on system identification,” Annu. Rev. Control, vol. 34, no. 1, pp. 1–12, Apr. 2010. doi: 10.1016/j.arcontrol.2009.12.001
    [3]
    X. Ping, J. Hu, T. Lin, B. Ding, P. Wang, and Z. Li, “A survey of output feedback robust MPC for linear parameter varying systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1717–1751, Oct. 2022. doi: 10.1109/JAS.2022.105605
    [4]
    A. Chiuso and G. Pillonetto, “System identification: A machine learning perspective,” Annu. Rev. Control Robot. Auton. Syst., vol. 2, pp. 281–304, May 2019. doi: 10.1146/annurev-control-053018-023744
    [5]
    N.-N. Dao, D.-N. Vu, Y. Lee, S. Cho, C. Cho, and H. Kim, “Pattern-identified online task scheduling in multitier edge computing for industrial IoT services,” Mobile Inf. Syst., vol. 2018, no. 1, pp. 1–9, Apr. 2018. doi: 10.1155/2018/2101206
    [6]
    J. Schoukens and L. Ljung, “Nonlinear system identification: A user-oriented road map,” IEEE Control Syst. Mag., vol. 39, no. 6, pp. 28–99, Dec. 2019. doi: 10.1109/MCS.2019.2938121
    [7]
    T. Chai, J. Zhang, and T. Yang, “Demand forecasting of the fused magnesia smelting process with system identification and deep learning,” IEEE Trans. Ind. Informat., vol. 17, no. 12, pp. 8387–8396, Dec. 2021. doi: 10.1109/TII.2021.3065930
    [8]
    G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel methods in system identification, machine learning and function estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, Mar. 2014. doi: 10.1016/j.automatica.2014.01.001
    [9]
    P. P. Biswas, P. N. Suganthan, G. Wu, and G. A. J. Amaratunga, “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm,” Renew. Energy, vol. 132, pp. 425–438, Mar. 2019. doi: 10.1016/j.renene.2018.07.152
    [10]
    A. Gotmare, S. S. Bhattacharjee, R. Patidar, and N. V. George, “Swarm and evolutionary computing algorithms for system identification and filter design: A comprehensive review,” Swarm Evol. Comput., vol. 32, pp. 68–84, Feb. 2017. doi: 10.1016/j.swevo.2016.06.007
    [11]
    S. Lee, S. Lee, Y. Choi, J. Ben-Othman, L. Mokdad, K. I. Hwang, and H. Kim, et al., “Task-oriented surveillance framework for virtual emotion informatics in polygon spaces,” IEEE Wireless Wirel. Commun., vol. 30, no. 3, pp. 104–111, Jun. 2023. doi: 10.1109/MWC.001.2200454
    [12]
    K. Bekiroglu, S. Srinivasan, E. Png, R. Su, and C. Lagoa, “Recursive approximation of complex behaviours with IoT-data imperfections,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 656–667, May 2020. doi: 10.1109/JAS.2020.1003126
    [13]
    P. D. Rosero-Montalvo, Z. Istváàn, P. Töözüün, and W. Hernandez, “Hybrid anomaly detection model on trusted IoT devices,” IEEE Internet Things J., vol. 10, no. 12, pp. 10959–10969, Jun. 2023. doi: 10.1109/JIOT.2023.3243037
    [14]
    X. Jiang, X. Kong, and Z. Ge, “Augmented industrial data-driven modeling under the curse of dimensionality,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1445–1461, Jun. 2023. doi: 10.1109/JAS.2023.123396
    [15]
    A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, “Detecting sensor faults, anomalies and outliers in the Internet of Things: A survey on the challenges and solutions,” Electronics, vol. 9, no. 3, p. 511, Mar. 2020. doi: 10.3390/electronics9030511
    [16]
    Q. B. Jin, Z. Y. Wang, W. Cai, and Y. M. Zhang, “Parameter identification for Wiener-finite impulse response system with output data of missing completely at random mechanism and time delay,” Int. J. Adapt. Control Signal Process., vol. 35, no. 5, pp. 811–827, Mar. 2021. doi: 10.1002/acs.3227
    [17]
    X. C. Du, X. S. Zhan, J. Wu, and H. C. Yan, “Effects of two two-channel noise and packet loss on performance of information time delay systems,” IEEE Trans. Neural Network. Learn. Syst., vol. 35, no. 6, pp. 8549–8556, Dec. 2022.
    [18]
    Z. Zhang, H. Jiang, D. Shen, and S. S. Saab, “Data-driven learning control algorithms for unachievable tracking problems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 205–218, Jan. 2024. doi: 10.1109/JAS.2023.123756
    [19]
    Y. Wang, J. L. Xiong, and D. W. C. Ho, “Decentralized control scheme for large-scale systems defined over a graph in presence of communication delays and random missing measurements,” Automatica, vol. 98, pp. 190–200, Dec. 2018. doi: 10.1016/j.automatica.2018.09.023
    [20]
    R. K. Pearson, “Outliers in process modeling and identification,” IEEE Trans. Control Syst. Technol., vol. 10, no. 1, pp. 55–63, Jan. 2002. doi: 10.1109/87.974338
    [21]
    K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines,” IEEE Access, vol. 9, pp. 120043–120065, Aug. 2021. doi: 10.1109/ACCESS.2021.3107975
    [22]
    L. Fu and P. Li, “The research survey of system identification method,” in Proc. 5th IEEE Int. Conf. Intelligent Human-Machine Systems and CyberneticsIntell. Human-Mach. Syst. Cybern., Hangzhou, China, 2013, pp. 397–401, 2013 .
    [23]
    O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes. 2nd ed. Cham, Germany: Springer Nature, 2020.
    [24]
    L. Ljung, System Identification: Theory for the User, 2nd ed. Englewood Cliffs: Prentice Hall, 1999.
    [25]
    R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, 3rd ed. Hoboken, USA: John Wiley & Sons, 2019.
    [26]
    M. Soley-Bori, Dealing with missing data: Key assumptions and methods for applied analysis, Boston University Technical Report, Boston, USA, Tech. Rep. No. 4no. 4, 2013.
    [27]
    R. Williams, Missing data Part 1: Overview, traditional methods, Notre Dame: University of Notre Dame, Notre Dame, France, 2015.
    [28]
    H. Ahn, K. Sun, and K. P. Kim, “Comparison of missing data imputation methods in time series forecasting,” Comput. Mater. Continua, vol. 70, no. 1, pp. 767–779, 2022.
    [29]
    F. Bashir and H.-L. Wei, “Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm,” Neurocomputing, vol. 276, pp. 23–30, Feb. 2018. doi: 10.1016/j.neucom.2017.03.097
    [30]
    M. D. Samad, S. Abrar, and N. Diawara, “Missing value estimation using clustering and deep learning within multiple imputation framework,” Knowl.-Based Syst., vol. 249, Aug. 2022, Art. nopp. 108968, Aug. 2022.
    [31]
    Z. Wang, Y. Zhang, Q. Jin, Q. Liu, and A. L. Kelly, et al., “Wiener models robust identification of multi-rate process with time-varying delay using expectation-maximization algorithm,” J. Process Control, vol. 2022118, no. 118, pp. 126–138, Oct. 2022.
    [32]
    N. Sammaknejad, Y. Zhao, and B. Huang, “A review of the expectation maximization algorithm in data-driven process identification,” J. Process Control, vol. 73, pp. 123–136, Jan. 2019. doi: 10.1016/j.jprocont.2018.12.010
    [33]
    W. Deng, Y. Guo, J. Liu, Y. Li, D. G. Liu, and L. Zhu, et al, “A missing power data filling method based on improved random forest algorithm,” Chin. J. Electr. Eng., vol. 5, no. 4, pp. 33–39, Dec. 2019. doi: 10.23919/CJEE.2019.000025
    [34]
    D. M. P. Murti, U. Pujianto, A. P. Wibawa, and M. I. Akbar, “K-nearest neighbor (K-NN) based missing data imputation,” in Proc. 5th Int. Conf. Science in Information TechnologySci. Inf. Technol., Yogyakarta, Indonesia, 2019, pp. 83–88, 2019.
    [35]
    F. Ding and T. Chen, “Combined parameter and output estimation of dual-rate systems using an auxiliary model,” Automatica, vol. 40, no. 10, pp. 1739–1748, Oct. 2004. doi: 10.1016/j.automatica.2004.05.001
    [36]
    F. Ding and J. Ding, “Least-squares parameter estimation for systems with irregularly missing data,” Int. J. Adapt. Control Signal Process., vol. 24, no. 7, pp. 540–553, Jul. 2010. doi: 10.1002/acs.1141
    [37]
    J. Chen, Q. M. Zhu, and Y. G. Liu, “Modified Kalman filtering based multi-step-length gradient iterative algorithm for ARX models with random missing outputs,” Automatica, vol. 118, p. 109034, Aug. 2020. doi: 10.1016/j.automatica.2020.109034
    [38]
    Y. Liu, K. Wen, Q. Gao, et al., “SVM based multi-label learning with missing labels for image annotation,” Pattern Recognit., vol. 78, pp. 307–317, Jun. 2018. doi: 10.1016/j.patcog.2018.01.022
    [39]
    R. J. A. Little, “Selection and pattern-mixture models,” in Longitudinal Data Analysis, G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs, Eds. New York, USA: Hall/CRC, 2008, pp. 409–431, 2008.
    [40]
    E. T. Emmanuel, T. Maupong, D. Mpoeleng, Semong, B. Mphago, and O. Tabona, et al., “A survey on missing data in machine learning,” J. Big Data, vol. 8, no. 1, p. 140, 2021. doi: 10.1186/s40537-021-00516-9
    [41]
    A. R. T. Donders, G. J. M. G. van der Heijden, T. Stijnen, and K. G. M. Moons, “Review: A gentle introduction to imputation of missing values,” J. Clin. Epidemiol., vol. 59, no. 10, pp. 1087–1091, Oct. 2006. doi: 10.1016/j.jclinepi.2006.01.014
    [42]
    S. Khatibisepehr and B. Huang, “Dealing with irregular data in soft sensors: Bayesian method and comparative study,” Ind. Eng. Chem. Res., vol. 47, no. 22, pp. 8713–8723, Oct. 2008. doi: 10.1021/ie800386v
    [43]
    S. Mukhopadhyay and A. Mukherjee, “ImdLMS: An imputation based LMS algorithm for linear system identification with missing input data,” IEEE Trans. Signal Process., vol. 68, pp. 2370–2385, Mar. 2020. doi: 10.1109/TSP.2020.2983162
    [44]
    B. Gomer and K.-H. Yuan, “A realistic evaluation of methods for handling missing data when there is a mixture of MCAR, MAR, and MNAR mechanisms in the same dataset,” Multivariate Behav. Res., vol. 58, no. 5, pp. 988–1013, Jan. 2023. doi: 10.1080/00273171.2022.2158776
    [45]
    X. Yang and H. R. Karimi, “Identification of LTI time-delay systems with missing output data using GEM algorithm,” Math. Probl. Eng., vol. 152014, no. 1, pp. 1–8242145, Mar. 2014.
    [46]
    X. P. Liu, X. Q. Yang, and M. Yu, “Identification of switched FIR systems with random missing outputs: A variational Bayesian approach,” J. Frankl. Inst. -Eng. Appl. Math., vol. 358, no. 1, pp. 1136–1151, Jan. 2021. doi: 10.1016/j.jfranklin.2020.10.046
    [47]
    J. Zhao, L. Chen, W. Pedrycz, and W. Wang, “A novel semi-supervised sparse Bayesian regression based on variational inference for industrial datasets with incomplete outputs,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 4773–4786, Nov. 2020. doi: 10.1109/TSMC.2018.2864752
    [48]
    J. Chen, B. Huang, F. Ding, et al., “Variational Bayesian approach for ARX systems with missing observations and varying time-delays,” Automatica, vol. 94, pp. 194–204, Aug. 2018. doi: 10.1016/j.automatica.2018.04.003
    [49]
    F. Pukelsheim, “The three-sigma rule,” Amer. Statist., vol. 48, no. 2, pp. 88–91, May 1994. doi: 10.1080/00031305.1994.10476030
    [50]
    Z. Yao, J. Xie, Y. Tian, et al., “Using Hampel identifier to eliminate profile-isolated outliers in laser vision measurement,” Journal of Sensors, vol. 2019, no. 1, pp. 1–12, Jan. 2019.
    [51]
    R. Risco, D. Páèrez, and L. Casaverde, “System identification models’ fit using error histogram analysis and the Hampel filter as computational tools,” in Proc. 27th IEEE Int. Congr. Conf. Electronics, Electrical Engineering and ComputingElectron. Elect. Eng. Comput., Lima, Peru, 2020, pp. 1–4.
    [52]
    H. P. Vinutha et al., B. Poornima, and B. M. Sagar, Detection of outliers using interquartile range technique from intrusion dataset, in Information and Decision Sciences: Proc. the 6th Int. Conf. on FICTA, S. C. Satapathy, J. M. R. S. Tavares, V. Bhateja, and J. R. Mohanty, Eds. Singapore, Singapore: Springer, Berlin, Germany: Springer, 2018, pp. 511–518, 2018.
    [53]
    P. J. Rousseeuw and M. Hubert, “Robust statistics for outlier detection,” WIREs Data Mining Min. Knowl. Discovery, vol. 1, no. 1, pp. 73–79, Jan.–Feb. 2011. doi: 10.1002/widm.2
    [54]
    L. Zou, Z. Wang, H. Geng, and X. Liu, “Set-membership filtering subject to impulsive measurement outliers: A recursive algorithm,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 377–388, Feb. 2021. doi: 10.1109/JAS.2021.1003826
    [55]
    M. S. Duarte and G. A. Barreto, “Online sparse correntropy kernel learning for outlier-robust system identification,” IFAC Proceedings Volumes, vol. 52, no. 1, pp. 430–435, Jan. 2019.
    [56]
    J. Zhu, Z. Ge, Z. Song, and F. R. Gao, “Review and Big Data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data,” Annu. Rev. Control, vol. 46, pp. 107–133, Jan. 2018. doi: 10.1016/j.arcontrol.2018.09.003
    [57]
    P. J. Rousseeuw, “Least median of squares regression,” J. Amer. Statist. Assoc., vol. 79, no. 388, pp. 871–880, Dec. 1984. doi: 10.1080/01621459.1984.10477105
    [58]
    D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “On the least trimmed squares estimator,” Algorithmica, vol. 69, no. 1, pp. 148–13683, May 2007.
    [59]
    P. Bloomfield and W. L. Steiger, Least Absolute Deviations. Boston, MA, USA: Birkhääuser, 1984 1983.
    [60]
    P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Statist. Theory Methods, vol. 6, no. 9, pp. 813–827, Jun. 1977. doi: 10.1080/03610927708827533
    [61]
    P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist., vol. 53, no. 1, pp. 73–101, Mar. 1964.
    [62]
    S.-C. Chan and Y.-X. Zou, “A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: Fast algorithm and convergence performance analysis,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 975–991, Apr. 2004. doi: 10.1109/TSP.2004.823496
    [63]
    W. Xu, E. -W. Bai, and M. Cho, “System identification in the presence of outliers and random noises: A compressed sensing approach,” Automatica, vol. 50, no. 11, pp. 2905–2911, Nov. 2014. doi: 10.1016/j.automatica.2014.10.017
    [64]
    M. Kuss, “Gaussian process models for robust regression, classification, and reinforcement learning,” Ph.D. dissertation, Technische Univ. Darmstadt, Darmstadt, Germany, 2006.
    [65]
    A. Daemi, H. Kodamana, and B. Huang, “Gaussian process modelling with Gaussian mixture likelihood,” Journal of. Process Control, vol. 81, pp. 209–220, Sep. 2019. doi: 10.1016/j.jprocont.2019.06.007
    [66]
    M. Svenséen and C. M. Bishop, “Robust Bayesian mixture modelling,” Neurocomputing, vol. 64, pp. 235–252, Mar. 2005. doi: 10.1016/j.neucom.2004.11.018
    [67]
    C. L. C. Mattos, Z. Dai, A. Damianou, G. A. Barreto, and N. D. Lawrence, et al., “Deep recurrent Gaussian processes for outlier-robust system identification,” J. Process Control, vol. 60, no. 6, pp. 82–94, Dec. 2017.
    [68]
    X. Liu, X. Yang, P. Zhu, et al., “Robust identification of nonlinear time-delay system in state-space form,” J. Franklin Inst., vol. 356, no. 16, pp. 9953–9971, Nov. 2019. doi: 10.1016/j.jfranklin.2019.01.054
    [69]
    R. M. Neal, Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification, Tech. Rep., University of Toronto, Dept. of Statistics, Univ. Toronto, Toronto, Canada, Tech. Rep. 9702, 1997.
    [70]
    T. B. Schöön, F. Lindsten, J. Dahlin, J. Wægberg, C. A. Naesseth, A. Svensson, L. Dai, “Sequential Monte Carlo methods for system identification,” IFAC Proceedings Volumes, vol. 48, no. 28, pp. 775–786, Jan. 2015.
    [71]
    M. Lindfors and T. Chen, “Regularized LTI system identification in the presence of outliers: A variational EM approach,” Automatica, vol. 121, p. 109152, Nov. 2020. doi: 10.1016/j.automatica.2020.109152
    [72]
    T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Proc. 17th Int. Conf. Uncertainty in Artif. icial Intell. igence, Seattle, Washington, 2001, pp. 362–369.
    [73]
    E. J. Candèes, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?,” J. ACM, vol. 58, no. 3, pp. 1–371, May 2011.
    [74]
    C. Yu, Q.-G. Wang, D. Zhang, L. Wang, and J. Huang, “System identification in presence of outliers,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1202–1216, May 2016. doi: 10.1109/TCYB.2015.2430356
    [75]
    Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix,” in Proc. Comput. Adv. Multi-Sens. Adapt. Process., vol. 61, Aruba, Dutch AntillesCoordinated Science Lab., Urbana, USA, UILU-ENG-09-2214, Aug. 2009, pp. 1–18.
    [76]
    M. Ayazoglu, M. Sznaier, and O. I. Camps, “Fast algorithms for structured robust principal component analysis,” in Proc. IEEE Conf. Computer Vision and Pattern RecognitionComput. Vis. Pattern Recognit., Providence, RI, USA, 2012, pp. 1704–1711.
    [77]
    Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approximation with application to system identification,” SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp. 1235–1256, Jan. 2009.
    [78]
    A. Cortiella, K.-C. Park, and A. Doostan, “A priori denoising strategies for sparse identification of nonlinear dynamical systems: A comparative study,” J. Comput. Inf. Sci. Eng., vol. 23, no. 1, p. 011004, Feb. 2023.
    [79]
    L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Autom. Control, vol. 22, no. 4, pp. 551–575, Aug. 1977. doi: 10.1109/TAC.1977.1101561
    [80]
    I. Markovsky, J. C. Willems, S. Van Huffel, B. De Moor, and R. Pintelon, “Application of structured total least squares for system identification and model reduction,” IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1490–1500, Oct. 2005. doi: 10.1109/TAC.2005.856643
    [81]
    S. Rhode, K. Usevich, I. Markovsky, and F. Gauterin, “A recursive restricted total least-squares algorithm,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5652–5662, Nov. 2014. doi: 10.1109/TSP.2014.2350959
    [82]
    X. Z. Wei, “A bias correction method for identification of linear dynamic errors-in-variables models,” IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1142–1147, Jul. 2002. doi: 10.1109/TAC.2002.800661
    [83]
    W. X. Zheng, “On a least-squares-based algorithm for identification of stochastic linear systems,” IEEE Trans. Signal Process., vol. 46, no. 6, pp. 1631–1638, Jun. 1998. doi: 10.1109/78.678479
    [84]
    Q.-G. Wang, C. Yu, and Y. Zhang, “Improved system identification with renormalization group,” ISA Trans., vol. 53, no. 5, pp. 1481–1488, Sep. 2014. doi: 10.1016/j.isatra.2013.10.003
    [85]
    W.-X. Zheng and C.-B. Feng, “Unbiased parameter estimation of linear systems in the presence of input and output noise,” Int. J. Adapt. Control Signal Process., vol. 3, no. 3, pp. 231–251, Sep. 1989. doi: 10.1002/acs.4480030303
    [86]
    T. Söoderströom and P. Stoica, Instrumental Variable Methods for System Identification, Circuits, Syst. Signal Process. Springer, vol. 21, no. 1, pp. 1–9, Jan. 1983.
    [87]
    B. Ni, M. Gilson, and H. Garnier, “Refined instrumental variable method for hammerstein--wiener continuous-time model identification,” IET Control Theory Appl., vol. 7, no. 9, pp. 1276–1286, Jun. 2013. doi: 10.1049/iet-cta.2012.0548
    [88]
    P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proc. 25th Int. Conf. Machine. Learning, Helsinki, Finland, 2008, pp. 1096–1103.
    [89]
    P. Vincent, H. Larochelle, I. Lajoie, et al., “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–3408, Dec. 2010.
    [90]
    S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning of dynamics and signal-noise decomposition with time-stepping constraints,” J. Comput. Phys., vol. 396, pp. 483–506, Nov. 2019. doi: 10.1016/j.jcp.2019.06.056
    [91]
    W. Zhu, S. M. Mousavi, and G. C. Beroza, “Seismic signal denoising and decomposition using deep neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9476–9488, Nov. 2019. doi: 10.1109/TGRS.2019.2926772
    [92]
    I. Tošićc and P. Frossard, “Dictionary learning,” IEEE Signal Process. Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011. doi: 10.1109/MSP.2010.939537
    [93]
    J. Li, Z. Wang, Q. Li, et al., “An enhanced K-SVD denoising algorithm based on adaptive soft-threshold shrinkage for fault detection of wind turbine rolling bearing,” ISA Trans., vol. 142, pp. 454–464, Nov. 2023. doi: 10.1016/j.isatra.2023.07.042
    [94]
    I. Markovsky, Low-Rank Approximation: Algorithms, Implementation, Applications. 2nd ed., ChamBerlin, Germany: Springer, 2019.
    [95]
    I. Markovsky, “Structured low-rank approximation and its applications,” Automatica, vol. 44, no. 4, pp. 891–909, Apr. 2008. doi: 10.1016/j.automatica.2007.09.011
    [96]
    M. Yin and R. S. Smith, “On low-rank Hankel matrix denoising,” IFAC Proceedings Volumes, vol. 54, no. 7, pp. 198–203, Jan. 2021.
    [97]
    R. R. Nadakuditi, “OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 3002–3018, May 2014. doi: 10.1109/TIT.2014.2311661
    [98]
    Q.-G. Wang and C. Yu, “New approaches to parameter estimation with finite samples,” in Proc. 10th Asian Control Conf., Kota Kinabalu, Malaysia, 2015, pp. 1–6.
    [99]
    C. Yu, D. Srinivasan, and Q.-G. Wang, “Global optimization through randomized group search in contracting regions,” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada, 2016, pp. 2813–2820.
    [100]
    JM. Schoukens and K. Tiels, “Identification of block-oriented nonlinear systems starting from linear approximations: A survey,” Automatica, vol. 85, pp. 272–292, Nov. 2017. doi: 10.1016/j.automatica.2017.06.044
    [101]
    J. R. Kolodziej and D. J. Mook, “Model determination for nonlinear state-based system identification,” Nonlinear Dyn., vol. 201163, no. 4, pp. 735–753, Mar. 2011.
    [102]
    C. Y. Lai, C. Xiang, and T. H. Lee, “Data-based identification and control of nonlinear systems via piecewise affine approximation,” IEEE Trans. Neural NetworksNetw., vol. 22, no. 12, pp. 2189–2200, Dec. 2011. doi: 10.1109/TNN.2011.2175946
    [103]
    E.-W. Bai and M. Deistler, “An interactive term approach to non-parametric FIR nonlinear system identification,” IEEE Trans. Autom. Control, vol. 55, no. 8, pp. 1952–1957, Aug. 2010. doi: 10.1109/TAC.2010.2050355
    [104]
    E.-W. Bai, “A blind approach to the Hammerstein-Wiener model identification,” Automatica, vol. 38, no. 6, pp. 967–979, Jun. 2002. doi: 10.1016/S0005-1098(01)00292-8
    [105]
    J. Yao, Y. P. Huang, and Z. C. Ji, “Parameter identification of wiener models by multi-innovation algorithms,” Int. J. Control, Autom. Syst., vol. 11, no. 6, pp. 1170–1176, Nov. 2013. doi: 10.1007/s12555-012-0261-4
    [106]
    G. Q. Li, C. Y. Wen, W. X. Zheng, and Y. Chen, “Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines,” IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2146–2159, May 2011. doi: 10.1109/TSP.2011.2112355
    [107]
    M. Sznaier, “Control oriented learning in the era of big data,” IEEE Control. Syst. Lett., vol. 5, no. 6, pp. 1855–1867, Dec. 2020.
    [108]
    H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector regression machines,” in Proc. 9th Int. Conf. Neural Information Processing Systems Inf. Process. Syst., Denver, Colorado, 1996, pp. 155–161, 1997.
    [109]
    C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MAUSA: MIT Press, 20062005.
    [110]
    A. D. Carnerero, D. R. Ramirez, D. Limon, and T. Alamo, “Kernel-based state-space kriging for predictive control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1263–1275, May 2023. doi: 10.1109/JAS.2023.123459
    [111]
    G. Pillonetto and G. De Nicolao, “A new kernel-based approach for linear system identification,” Automatica, vol. 46, no. 1, pp. 81–93, Jan. 2010. doi: 10.1016/j.automatica.2009.10.031
    [112]
    R. S. Smith, “Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations,” IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 2886–2896, Nov. 2014. doi: 10.1109/TAC.2014.2351731
    [113]
    G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, and L. Ljung, “Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint,” Automatica, vol. 69, pp. 137–149, Jul. 2016. doi: 10.1016/j.automatica.2016.02.012
    [114]
    W. Zheng and W. Wu, “An adaptive distributed quasi-newton method for power system state estimation,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5114–5124, Sep. 2018.
    [115]
    G. Quaranta, W. Lacarbonara, and S. F. Masri, “A review on computational intelligence for identification of nonlinear dynamical systems,” Nonlinear Dynam., vol. 99, no. 2, pp. 1709–1761, Jan. 2020. doi: 10.1007/s11071-019-05430-7
    [116]
    H. Liu, J. Zhang, X. Zhang, A. Kurniawan, T. Juhana, and B. Ai, et al., “Tabu-search-based pilot assignment for cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2286–2290, Feb. 2019.
    [117]
    H. V. H. Ayala and L. dos Santos Coelho, “Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks,” Mech. Syst. Signal Process., vol. 68-69, pp. 378–393, Feb. 2016. doi: 10.1016/j.ymssp.2015.05.022
    [118]
    Y. Wan, C. Chen, A. Ma, L. Zhang, X. Gong, and Y. Zhong, “Adaptive multistrategy particle swarm optimization for hyperspectral remote sensing image band selection,” IEEE Trans. Geosci. Remote Sens., vol. 61, p. 155520115, p. , pp. , Aug. 2023.
    [119]
    Y. Cao, H. Zhang, W. Li, M. Zhou, Y. Zhang, and W. A. Chaovalitwongse, “Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions,” IEEE Trans. Evol. Comput., vol. 23, no. 4, pp. 718–731, Aug. 2019. doi: 10.1109/TEVC.2018.2885075
    [120]
    Q.-Y. Chen, L. Chen, J.-N. Su, M.-J. Fu, and G.-Y. Chen, “Model selection for RBF-ARX models,” Appl. Soft Comput., vol. 121, p. 108723, May 2022. doi: 10.1016/j.asoc.2022.108723
    [121]
    N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc., vol. 68, no. 3, pp. 337–404, Mar. 1950. doi: 10.1090/S0002-9947-1950-0051437-7
    [122]
    A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, “The connection between Bayesian estimation of a Gaussian random field and RKHS,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, pp. 1518–1524, Jul. 2015. doi: 10.1109/TNNLS.2014.2337939
    [123]
    F. Zhao, et al., “Multiple imputation method of missing credit risk assessment data based on generative adversarial networks,” Appl. Soft Comput., vol. 126, p. 109273, Sep. 2022. doi: 10.1016/j.asoc.2022.109273
    [124]
    Y. Hu, Y. Fan, Y. Song, et al., “A general robust low-rank multinomial logistic regression for corrupted matrix data classification,” Applied Appl. IntelligenceIntell., vol. 53, no. 15, pp. 18564–18580, Feb. 2023. doi: 10.1007/s10489-022-04424-0
    [125]
    E. Keçeci, M. Güzelkaya, and T. Kumbasar, “A novel federated learning framework for system identification,” in Proc. 8th Int. Int. Artificial Intelligence and Data Processing SymposiumSymp., Malatya, Turkiye, 2024, pp. 1–6.
    [126]
    A. Sharma, G. Uehara, and A. Spanias, “Quantum linear prediction for system identification and spectral estimation applications,” in 2023 Proc. 57th Asilomar Conf. on. Signals, Systems, and Computers, Pacific Grove, CA, USA, 2023, pp. 1151–1155.
    [127]
    R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-newton method for large-scale optimization,” SIAM J. Optim., vol. 26, no. 2, pp. 1008–1031, Jan. 2016. doi: 10.1137/140954362
    [128]
    L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperparameter tuning for deep learning-based side-channel analysis,” IEEE Trans. Emerg. Topics Top. Comput., vol. 12, no. 2, pp. 546–557, Apr.–Jun. 2024.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (18) PDF downloads(4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return