Citation: | D. Wang, L. Hu, and J. Qiao, “Hybrid event-triggered control with stability analysis,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1464–1474, Jul. 2025. doi: 10.1109/JAS.2024.125067 |
[1] |
H. Xu, S. Jagannathan, and F. L. Lewis, “Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses,” Automatica, vol. 48, no. 6, pp. 1017–1030, 2012. doi: 10.1016/j.automatica.2012.03.007
|
[2] |
M. Zhao, D. Wang, J. Qiao, M. Ha, and J. Ren, “Advanced value iteration for discrete-time intelligent critic control: A survey,” Artificial Intelligence Review, vol. 56, pp. 12315–12346, 2023.
|
[3] |
D. Wang, N. Gao, D. Liu, J. Li, and F. L. Lewis, “Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 18–36, Jan. 2024. doi: 10.1109/JAS.2023.123843
|
[4] |
D. Wang, M. Ha, and J. Qiao, “Data-driven iterative adaptive critic control toward an urban wastewater treatment plant,” IEEE Trans. Industrial Electronics, vol. 68, no. 8, pp. 7362–7369, Aug. 2021. doi: 10.1109/TIE.2020.3001840
|
[5] |
F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers,” IEEE Control Systems Magazine, vol. 32, no. 6, pp. 76–105, Dec. 2012. doi: 10.1109/MCS.2012.2214134
|
[6] |
Y. Zhang, B. Zhao, and D. Liu, “Deterministic policy gradient adaptive dynamic programming for model-free optimal control,” Neurocomputing, vol. 387, pp. 40–50, 2020.
|
[7] |
A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof,” IEEE Trans. Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 4, pp. 943–949, Aug. 2008. doi: 10.1109/TSMCB.2008.926614
|
[8] |
J. Li, Z. Xiao, J. Fan, T. Chai, and F. L. Lewis, “Off-policy Q-learning: Solving Nash equilibrium of multi-player games with network-induced delay and unmeasured state,” Automatica, vol. 136, p. 110076, 2022.
|
[9] |
T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update,” IEEE Trans. Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1118–1129, Jul. 2012. doi: 10.1109/TNNLS.2012.2196708
|
[10] |
Z. Chen and S. Jagannathan, “Generalized Hamilton-Jacobi-Bellman formulation based neural network control of affine nonlinear discrete-time systems,” IEEE Trans. Neural Networks, vol. 19, no. 1, pp. 90–106, Jan. 2008. doi: 10.1109/TNN.2007.900227
|
[11] |
D. Wang, J. Wang, M. Zhao, P. Xin, and J. Qiao, “Adaptive multi-step evaluation design with stability guarantee for discrete-time optimal learning control,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1797–1809, Sept. 2023. doi: 10.1109/JAS.2023.123684
|
[12] |
M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, Jul. 2022.
|
[13] |
Y. Yang, W. Gao, H. Modares, and C. Z. Xu, “Robust actor-critic learning for continuous-time nonlinear systems with unmodeled dynamics,” IEEE Trans. Fuzzy Systems, vol. 30, no. 6, pp. 2101–2112, Jun. 2022. doi: 10.1109/TFUZZ.2021.3075501
|
[14] |
C. Li, J. Ding, F. L. Lewis, and T. Chai, “A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems,” Automatica, vol. 129, p. 109687, Jul. 2021.
|
[15] |
M. Mottaghi and R. Chhabra, “Robust optimal output-tracking control of constrained mechanical systems with application to autonomous rovers,” IEEE Trans. Control Systems Technology, vol. 31, no. 1, pp. 83–98, Jan. 2023.
|
[16] |
O. Qasem, M. Davari, W. Gao, D. R. Kirk, and T. Chai, “Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs,” IEEE Trans. Industrial Electronics, vol. 71, no. 1, pp. 834–845, Jan. 2024. doi: 10.1109/TIE.2023.3247734
|
[17] |
R. Postoyan, P. Tabuada, D. Nesic, and A. Anta, “A ramework for the event-triggered stabilization of nonlinear systems,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 982–996, Apr. 2015. doi: 10.1109/TAC.2014.2363603
|
[18] |
P. Tallapragada and N. Chopra, “On event triggered tracking for nonlinear systems,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2343–2348, Sept. 2013. doi: 10.1109/TAC.2013.2251794
|
[19] |
X. Yang, B. Zhou, F. Mazenc, and J. Lam, “Global stabilization of discrete-time linear systems subject to input saturation and time delay,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1345–1352, Mar. 2021. doi: 10.1109/TAC.2020.2989791
|
[20] |
J. Zhang, G. Zheng, Y. Feng, and Y. Chen, “Event-triggered state-feedback and dynamic output-feedback control of PMJSs with intermittent faults,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 1039–1046, Feb. 2023. doi: 10.1109/TAC.2022.3146709
|
[21] |
Q. Zhao, J. Si, and J. Sun, “Online reinforcement learning control by direct heuristic dynamic programming: From time-driven to event-driven,” IEEE Trans. Neural Networks and Learning Systems, vol. 33, no. 8, pp. 4139–4144, Aug. 2022.
|
[22] |
K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control algorithm for continuous-time linear systems with optimal performance,” Automatica, vol. 87, pp. 412–420, Jan. 2018. doi: 10.1016/j.automatica.2017.03.013
|
[23] |
D. Wang, L. Hu, M. Zhao, and J. Qiao, “Adaptive critic for event-triggered unknown nonlinear optimal tracking design with wastewater treatment applications,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 9, pp. 6276–6288, Sept. 2023. doi: 10.1109/TNNLS.2021.3135405
|
[24] |
A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2030–2042, Sept. 2010. doi: 10.1109/TAC.2010.2042980
|
[25] |
K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered model predictive control for nonlinear input-affine dynamical systems via adaptive control samples selection,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 177–189, Jan. 2017.
|
[26] |
M. Wakaiki, “Self-triggered stabilization of discrete-time linear systems with quantized state measurements,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1776–1783, Mar. 2023. doi: 10.1109/TAC.2022.3159262
|
[27] |
K. Zhang, B. Zhou, W. Zheng, and G. Duan, “Event-triggered and self-triggered gain scheduled control of linear systems with input constraints,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6452–6463, Oct. 2022. doi: 10.1109/TSMC.2022.3146191
|
[28] |
A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-triggered control for discrete-time systems,” in Proc. American Control Conf., pp. 4719–4724, 2010.
|
[29] |
C. Souza, S. Tarbouriech, I. Queinnec, and A. Girard, “Nonstandard anti-windup approach for event-triggered control purpose,” Systems and Control Letters, vol. 185, p. 105715, Mar. 2024.
|
[30] |
X. Yang and Q. Wei, “Adaptive critic learning for constrained optimal event-triggered control with discounted cost,” IEEE Trans. Neural Networks and Learning Systems, vol. 32, no. 1, pp. 91–104, Jan. 2021.
|
[31] |
K. Zhang, R. Su, H. Zhang, and Y. Tian, “Adaptive resilient event-triggered control design of autonomous vehicles with an iterative single critic learning framework,” IEEE Trans. Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5502–5511, Dec. 2021. doi: 10.1109/TNNLS.2021.3053269
|
[32] |
D. Wang, M. Ha, and J. Qiao, “Self-learning optimal regulation for discrete-time nonlinear systems under event-driven formulation,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1272–1279, Mar. 2020. doi: 10.1109/TAC.2019.2926167
|
[33] |
Z. Zhang, C. Wen, L. Xing, and Y. Song, “Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only,” IEEE Trans. Autom. Control, vol. 67, no. 8, pp. 4218–4225, Aug. 2022. doi: 10.1109/TAC.2021.3115435
|
[34] |
S. Zhao, J. Wang, H. Xu, and B. Wang, “Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles,” IEEE Trans. Cybernetics, vol. 53, no. 2, pp. 913–926, Feb. 2023.
|
[35] |
D. Wang, M. Zhao, M. Ha, and L. Hu, “Adaptive-critic-based hybrid intelligent optimal tracking for a class of nonlinear discrete-time systems,” Engineering Applications of Artificial Intelligence, vol. 105, p. 104443, Oct. 2021.
|