Citation: | A. Perniciano, L. Zedda, C. Di Ruberto, B. Pes, and A. Loddo, “CRDet: An artificial intelligence-based framework for automated cheese ripeness assessment from digital images,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.125061 |
[1] |
T. Lei and D.-W. Sun, “Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review,” Trends Food Sci. Technol., vol. 88, pp. 527–542, Jun. 2019. doi: 10.1016/j.jpgs.2019.04.013
|
[2] |
P. L. H. McSweeney, “Biochemistry of cheese ripening,” Int. J. Dairy Technol., vol. 57, no. 2-3, pp. 127–144, May 2004. doi: 10.1111/j.1471-0307.2004.00147.x
|
[3] |
A. Forde and G. F. Fitzgerald, “Biotechnological approaches to the understanding and improvement of mature cheese flavour,” Curr. Opin. Biotechnol., vol. 11, no. 5, pp. 484–489, Oct. 2000. doi: 10.1016/S0958-1669(00)00130-0
|
[4] |
P. F. Fox, J. M. Wallace, S. Morgan, C. M. Lynch, E. J. Niland, and J. Tobin, “Acceleration of cheese ripening,” Antonie van Leeuwenhoek, vol. 70, no. 2-4, pp. 271–297, Oct. 1996. doi: 10.1007/BF00395937
|
[5] |
L. Sakkas, C. S. Pappas, and G. Moatsou, “FT-MIR analysis of water-soluble extracts during the ripening of sheep milk cheese with different phospholipid content,” Dairy, vol. 2, no. 4, pp. 530–541, Sep. 2021. doi: 10.3390/dairy2040042
|
[6] |
A. R. Khattab, H. A. Guirguis, S. M. Tawfik, and M. A. Farag, “Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment,” Trends Food Sci. Technol., vol. 88, pp. 343–360, Jun. 2019. doi: 10.1016/j.jpgs.2019.03.009
|
[7] |
J. Dias, P. Lage, A. Garrido, E. Machado, C. Conceição, S. Gomes, A. Martins, A. Paulino, M. F. Duarte, and N. Alvarenga, “Evaluation of gas holes in “Queijo de Nisa” PDO cheese using computer vision,” J. Food Sci. Technol., vol. 58, no. 3, pp. 1072–1080, Mar. 2021. doi: 10.1007/s13197-020-04621-0
|
[8] |
A. Loddo, C. Di Ruberto, G. Armano, and A. Manconi, “Automatic monitoring cheese ripeness using computer vision and artificial intelligence,” IEEE Access, vol. 10, pp. 122612–122626, Jan. 2022. doi: 10.1109/ACCESS.2022.3223710
|
[9] |
T. Jeliński, C.-J. Du, D.-W. Sun, and J. Fornal, “Inspection of the distribution and amount of ingredients in pasteurized cheese by computer vision,” J. Food Eng., vol. 83, no. 1, pp. 3–9, Nov. 2007. doi: 10.1016/j.jfoodeng.2006.12.020
|
[10] |
T. Lei, X.-H. Lin, and D.-W. Sun, “Rapid classification of commercial cheddar cheeses from different brands using PLSDA, LDA and SPA–LDA models built by hyperspectral data,” J. Food Meas. Charact., vol. 13, no. 4, pp. 3119–3129, Dec. 2019. doi: 10.1007/s11694-019-00234-0
|
[11] |
P. S. Minz and C. S. Saini, “Comparison of computer vision system and colour spectrophotometer for colour measurement of mozzarella cheese,” Appl. Food Res., vol. 1, no. 2, p. 100020, Dec. 2021. doi: 10.1016/j.afres.2021.100020
|
[12] |
R. Iezzi, F. Locci, R. Ghiglietti, C. Belingheri, S. Francolino, and G. Mucchetti, “Parmigiano Reggiano and Grana Padano cheese curd grains size and distribution by image analysis,” LWT, vol. 47, no. 2, pp. 380–385, Jul. 2012. doi: 10.1016/j.lwt.2012.01.035
|
[13] |
M. Alinovi, G. Mucchetti, and F. Tidona, “Application of NIR spectroscopy and image analysis for the characterisation of grated Parmigiano-Reggiano cheese,” Int. Dairy J., vol. 92, pp. 50–58, May 2019. doi: 10.1016/j.idairyj.2019.01.010
|
[14] |
G. Mulas, R. Anedda, D. L. Longo, T. Roggio, and S. Uzzau, “An MRI method for monitoring the ripening of Grana Padano cheese,” Int. Dairy J., vol. 52, pp. 19–25, Jan. 2016. doi: 10.1016/j.idairyj.2015.08.011
|
[15] |
Z. Li, S. Li, A. Francis, and X. Luo, “A novel calibration system for robot arm via an open dataset and a learning perspective,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 12, pp. 5169–5173, Dec. 2022.
|
[16] |
Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
|
[17] |
Z. Li, S. Li, O. O. Bamasag, A. Alhothali, and X. Luo, “Diversified regularization enhanced training for effective manipulator calibration,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 8778–8790, Nov. 2023. doi: 10.1109/TNNLS.2022.3153039
|
[18] |
G.-N. Zhu, Y. Zeng, Y. S. Teoh, E. Toh, C. Y. Wong, and I.-M. Chen, “A bin-picking benchmark for systematic evaluation of robotic-assisted food handling for line production,” IEEE/ASME Trans. Mech., vol. 28, no. 3, pp. 1778–1788, Jun. 2023. doi: 10.1109/TMECH.2022.3227038
|
[19] |
Y. Wang, M. Kang, Y. Liu, J. Li, K. Xue, X. Wang, J. Du, Y. Tian, Q. Ni, and F.-Y. Wang, “Can digital intelligence and cyber-physical-social systems achieve global food security and sustainability?,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2070–2080, Nov. 2023. doi: 10.1109/JAS.2023.123951
|
[20] |
T. Lei and D.-W. Sun, “Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review,” Trends Food Sci. Technol., vol. 88, pp. 527–542, Jun. 2019. doi: 10.1016/j.jpgs.2019.04.013
|
[21] |
D. Guggisberg, P. Schuetz, H. Winkler, R. Amrein, E. Jakob, M.-T. Fröhlich-Wyder, S. Irmler, W. Bisig, I. Jerjen, M. Plamondon, J. Hofmann, A. Flisch, and D. Wechsler, “Mechanism and control of the eye formation in cheese,” Int. Dairy J., vol. 47, pp. 118–127, Aug. 2015. doi: 10.1016/j.idairyj.2015.03.001
|
[22] |
D. Huc, F. Mariette, S. Challois, J. Barreau, G. Moulin, and C. Michon, “Multi-scale investigation of eyes in semi-hard cheese,” Innov. Food Sci. Emerg. Technol., vol. 24, pp. 106–112, Aug. 2014. doi: 10.1016/j.ifset.2013.10.002
|
[23] |
P. Schuetz, D. Guggisberg, I. Jerjen, M. T. Fröhlich-Wyder, J. Hofmann, D. Wechsler, A. Flisch, W. Bisig, U. Sennhauser, and H. P. Bachmann, “Quantitative comparison of the eye formation in cheese using radiography and computed tomography data,” Int. Dairy J., vol. 31, no. 2, pp. 150–155, Aug. 2013. doi: 10.1016/j.idairyj.2012.12.007
|
[24] |
A. Kulmyrzaev, É. Dufour, Y. Noël, M. Hanafi, R. Karoui, E. M. Qannari, and G. Mazerolles, “Investigation at the molecular level of soft cheese quality and ripening by infrared and fluorescence spectroscopies and chemometrics—relationships with rheology properties,” Int. Dairy J., vol. 15, no. 6-9, pp. 669–678, Jun.-Sep. 2005. doi: 10.1016/j.idairyj.2004.08.016
|
[25] |
Z. Ozbekova and A. Kulmyrzaev, “Fluorescence spectroscopy as a non destructive method to predict rheological characteristics of tilsit cheese,” J. Food Eng., vol. 210, pp. 42–49, Oct. 2017. doi: 10.1016/j.jfoodeng.2017.04.023
|
[26] |
M. L. Oca, M. C. Ortiz, L. A. Sarabia, A. E. Gredilla, and D. Delgado, “Prediction of zamorano cheese quality by near-infrared spectroscopy assessing false non-compliance and false compliance at minimum permitted limits stated by designation of origin regulations,” Talanta, vol. 99, pp. 558–565, Sep. 2012. doi: 10.1016/j.talanta.2012.06.035
|
[27] |
R. Karoui, A. M. Mouazen, É. Dufour, L. Pillonel, E. Schaller, D. Picque, J. De Baerdemaeker, and J.-O. Bosset, “A comparison and joint use of NIR and MIR spectroscopic methods for the determination of some parameters in European Emmental cheese,” Eur. Food Res. Technol., vol. 223, no. 1, pp. 44–50, May 2006. doi: 10.1007/s00217-005-0110-2
|
[28] |
E. S. Madalozzo, E. Sauer, and N. Nagata, “Determination of fat, protein and moisture in ricotta cheese by near infrared spectroscopy and multivariate calibration,” J. Food Sci. Technol., vol. 52, no. 3, pp. 1649–1655, Mar. 2015. doi: 10.1007/s13197-013-1147-z
|
[29] |
M. J. Lerma-García, A. Gori, L. Cerretani, E. F. Simó-Alfonso, and M. F. Caboni, “Classification of pecorino cheeses produced in Italy according to their ripening time and manufacturing technique using Fourier transform infrared spectroscopy,” J. Dairy Sci., vol. 93, no. 10, pp. 4490–4496, Oct. 2010. doi: 10.3168/jds.2010-3199
|
[30] |
C. Cevoli, A. Gori, M. Nocetti, L. Cuibus, M. F. Caboni, and A. Fabbri, “FT-NIR and FT-MIR spectroscopy to discriminate competitors, non compliance and compliance grated Parmigiano Reggiano cheese,” Food Res. Int., vol. 52, no. 1, pp. 214–220, Jun. 2013. doi: 10.1016/j.foodres.2013.03.016
|
[31] |
A. Crespo, A. Martín, S. Ruiz-Moyano, M. J. Benito, M. Rufo, J. M. Paniagua, and A. Jiménez, “Application of ultrasound for quality control of torta del casar cheese ripening,” J. Dairy Sci., vol. 103, no. 10, pp. 8808–8821, Oct. 2020. doi: 10.3168/jds.2020-18160
|
[32] |
A. Loddo, CR-IDB: The cheese ripeness image data base, 2024.
|
[33] |
L. Putzu, A. Loddo, and C. Di Ruberto, “Invariant moments, textural and deep features for diagnostic MR and CT image retrieval,” in Proc. 19th Int. Conf. Computer Analysis of Images and Patterns, 2021, pp. 287–297.
|
[34] |
P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proc. 2001 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Kauai, HI, USA, 2001, pp. I.
|
[35] |
L. Putzu and C. Di Ruberto, “Rotation invariant co-occurrence matrix features,” in Proc. 19th Int. Conf. Image Analysis and Processing, Catania, Italy, 2017, pp. 391–401.
|
[36] |
T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002. doi: 10.1109/TPAMI.2002.1017623
|
[37] |
R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by tchebichef moments,” IEEE Trans. Image Process., vol. 10, no. 9, pp. 1357–1364, Sep. 2001. doi: 10.1109/83.941859
|
[38] |
C. Di Ruberto, L. Putzu, and G. Rodriguez, “Fast and accurate computation of orthogonal moments for texture analysis,” Pattern Recognit., vol. 83, pp. 498–510, Nov. 2018. doi: 10.1016/j.patcog.2018.06.012
|
[39] |
M. R. Teague, “Image analysis via the general theory of moments,” J. Opt. Soc. Am., vol. 70, no. 8, pp. 920–930, Aug. 1980. doi: 10.1364/JOSA.70.000920
|
[40] |
C.-H. Teh and R. T. Chin, “On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 4, pp. 496–513, Jul. 1988. doi: 10.1109/34.3913
|
[41] |
M. Oujaoura, B. Minaoui, and M. Fakir, “Image annotation by moments,” in Moments and Moment Invariants-Theory and Applications, G. A. Papakostas, Ed. Xanthi, Greece: Science Gate Publishing, 2014, pp. 227–252.
|
[42] |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, 2012, pp. 1097–1105.
|
[43] |
J. Redmon, S. K. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 779–788.
|
[44] |
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 2017, pp. 2261–2269.
|
[45] |
M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 6105–6114.
|
[46] |
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. 2015 IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 1–9.
|
[47] |
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2818–2826.
|
[48] |
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, CA, USA, 2017, pp. 4278–4284.
|
[49] |
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable image recognition,” in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 2018, pp. 8697–8710.
|
[50] |
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770–778.
|
[51] |
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, CA, USA, 2015.
|
[52] |
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 1800–1807.
|
[53] |
E. Raei, A. Akbari Asanjan, M. R. Nikoo, M. Sadegh, S. Pourshahabi, and J. F. Adamowski, “A deep learning image segmentation model for agricultural irrigation system classification,” Comput. Electron. Agric., vol. 198, p. 106977, Jul. 2022. doi: 10.1016/j.compag.2022.106977
|
[54] |
A. Loddo, M. Loddo, and C. Di Ruberto, “A novel deep learning based approach for seed image classification and retrieval,” Comput. Electron. Agric., vol. 187, p. 106269, Aug. 2021. doi: 10.1016/j.compag.2021.106269
|
[55] |
G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017. doi: 10.1016/j.media.2017.07.005
|
[56] |
S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 448–456.
|
[57] |
I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.
|
[58] |
R. R. Zebari, A. Mohsin Abdulazeez, D. Q. Zeebaree, D. A. Zebari, and J. N. Saeed, “A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction,” J. Appl. Sci. Technol. Trends, vol. 1, no. 1, pp. 56–70, May 2020. doi: 10.38094/jastt1224
|
[59] |
A. M. A. and P. A. Thomas, “Comparative review of feature selection and classification modeling,” in Proc. 2019 Int. Conf. Advances in Computing, Communication and Control, Mumbai, India, 2019, pp. 1–9.
|
[60] |
L. M. Cannas, N. Dessi, and B. Pes, “Assessing similarity of feature selection techniques in high-dimensional domains,” Pattern Recogn. Lett., vol. 34, no. 12, pp. 1446–1453, Sep. 2013. doi: 10.1016/j.patrec.2013.05.011
|
[61] |
P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining. 2nd ed. London, UK: Pearson, 2019.
|
[62] |
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. Amsterdam, The Netherlands: Morgan Kaufmann, 2017.
|
[63] |
R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and review,” J. Biomed. Inform., vol. 85, pp. 189–203, Sep. 2018. doi: 10.1016/j.jbi.2018.07.014
|
[64] |
N. Dessì and B. Pes, “Similarity of feature selection methods: An empirical study across data intensive classification tasks,” Expert Syst. Appl., vol. 42, no. 10, pp. 4632–4642, Jun. 2015. doi: 10.1016/j.eswa.2015.01.069
|
[65] |
J.-M. Jo, “Effectiveness of normalization pre-processing of big data to the machine learning performance,” J. Korea Inst. Electron. Commun. Sci., vol. 14, no. 3, pp. 547–552, Jun. 2019.
|
[66] |
L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Appl. Soft Comput., vol. 133, p. 109924, Jan. 2023. doi: 10.1016/j.asoc.2022.109924
|
[67] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
|
[68] |
L. Zedda, A. Perniciano, A. Loddo, and C. Di Ruberto, “Understanding cheese ripeness: An artificial intelligence-based approach for hierarchical classification,” Knowl. Based Syst., vol. 295, p. 111833, Jul. 2024. doi: 10.1016/j.knosys.2024.111833
|
[69] |
P. Schuetz, D. Guggisberg, M.-T. Fröhlich-Wyder, and D. Wechsler, “Software comparison for the analysis of cheese eyes in x-ray computed tomography,” Int. Dairy J., vol. 63, pp. 62–69, Dec. 2016. doi: 10.1016/j.idairyj.2016.08.001
|
[70] |
M. C. Soto-Barajas, M. I. González-Martín, J. Salvador-Esteban, J. M. Hernández-Hierro, V. Moreno-Rodilla, A. M. Vivar-Quintana, I. Revilla, I. L. Ortega, R. Morón-Sancho, and B. Curto-Diego, “Prediction of the type of milk and degree of ripening in cheeses by means of artificial neural networks with data concerning fatty acids and near infrared spectroscopy,” Talanta, vol. 116, pp. 50–55, Nov. 2013. doi: 10.1016/j.talanta.2013.04.043
|
[71] |
S. T. M. Del Campo, N. Bonnaire, D. Picque, and G. Corrieu, “Initial studies into the characterisation of ripening stages of emmental cheeses by mid-infrared spectroscopy,” Dairy Sci. Technol., vol. 89, no. 2, pp. 155–167, Mar. 2009. doi: 10.1051/dst/2008041
|