IEEE/CAA Journal of Automatica Sinica
Citation: | K. Bojappa and J. Lee, “Review on particle swarm optimization: application toward autonomous dynamical systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1762–1775, Sept. 2025. doi: 10.1109/JAS.2024.125028 |
[1] |
R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39−43.
|
[2] |
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int. Conf. Neural Networks, Perth, Australia, 1995, pp. 1942−1948.
|
[3] |
R. C. Eberhart, P. K. Simpson, R. C. Dobbins, and Roy W. Dobbins, Computational Intelligence PC Tools. Boston, USA: Academic Press Professional, 1996.
|
[4] |
J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
|
[5] |
M. Clerc, Particle Swarm Optimization. Hoboken, USA: John Wiley & Sons, 2010.
|
[6] |
Eberhart and Y. Shi, “Particle swarm optimization: Developments, applications and resources,” in Proc. Congr. Evolutionary Computation, Seoul, Korea (South), 2001, pp. 81−86.
|
[7] |
Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in Proc. 7th Int. Conf. Evolutionary Programming, San Diego, USA, 1998, pp. 591−600.
|
[8] |
Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE Int. Conf. Evolutionary Computation Proc., Anchorage, USA, 1998, pp. 69−73.
|
[9] |
Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proc. Congr. Evolutionary Computation, Washington, USA, 1999, pp. 1945−1950.
|
[10] |
R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proc. Congr. Evolutionary Computation, Seoul, Korea (South), 2001, pp. 94−100.
|
[11] |
J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance,” in Proc. Congr. Evolutionary Computation, Washington, USA, 1999, pp. 1931−1938.
|
[12] |
M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002. doi: 10.1109/4235.985692
|
[13] |
Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle swarm optimization algorithm and its applications,” Math. Probl. Eng., vol. 2015, p. 931256, Feb. 2015.
|
[14] |
S. Yang, M. Wang, and L. Jiao, “A quantum particle swarm optimization,” in Proc. Congr. Evolutionary Computation, Portland, USA, 2004, pp. 320−324.
|
[15] |
X. G Zhao, L. Ji, M. Jin, and Z. Ying, “An improved quantum particle swarm optimization algorithm for environmental economic dispatch,” Exp. Syst. Appl., vol. 152, p. 113370, Aug. 2020. doi: 10.1016/j.eswa.2020.113370
|
[16] |
A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: A generalization of particle swarm optimization,” in Proc. IEEE Int. Joint Conf. Neural Networks, Montreal, Canada, 2005, pp. 1086−1091.
|
[17] |
Y. T. Juang, S. L. Tung, and H. C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” Inf. Sci., vol. 181, no. 20, pp. 4539–4549, Oct. 2011. doi: 10.1016/j.ins.2010.11.025
|
[18] |
H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca, “Enhancing particle swarm optimization using generalized opposition-based learning,” Inf. Sci., vol. 181, no. 20, pp. 4699–4714, Oct. 2011. doi: 10.1016/j.ins.2011.03.016
|
[19] |
A. Rezaee Jordehi, “Particle swarm optimisation with opposition learning-based strategy: An efficient optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems,” Soft Comput, vol. 24, no. 24, pp. 18573–18590, Dec. 2020. doi: 10.1007/s00500-020-05093-2
|
[20] |
M. E. H. Pedersen and A. J. Chipperfield, “Simplifying particle swarm optimization,” Appl. Soft Comput., vol. 10, no. 2, pp. 618–628, Mar. 2010. doi: 10.1016/j.asoc.2009.08.029
|
[21] |
Y. Zhou, D. Luo, A. Wen, L. Chen, and M. Lin, “Simplified particle swarm optimization algorithm with improved learning factor and search method,” in Proc. Int. Conf. Computer Information Science and Artificial Intelligence, Kunming, China, 2021, pp. 405−408.
|
[22] |
R. J. Kuo and C. W. Hong, “Integration of genetic algorithm and particle swarm optimization for investment portfolio optimization,” Appl. Math. Inf. Sci., vol. 7, no. 6, pp. 2397–2408, Jul. 2013. doi: 10.12785/amis/070633
|
[23] |
A. Amirteimoori, I. Mahdavi, M. Solimanpur, S. S. Ali, and E. B. Tirkolaee, “A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation,” Comput Ind. Eng., vol. 173, p. 108672, Nov. 2022. doi: 10.1016/j.cie.2022.108672
|
[24] |
N. Holden and A. A. Freitas, “A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data,” in Proc. IEEE Swarm Intelligence Symp., Pasadena, USA, 2005, pp. 100−107.
|
[25] |
Q. Song, L. Yu, S. Li, N. Hanajima, X. Zhang, and R. Pu, “Energy dispatching based on an improved PSO-ACO algorithm,” Int. J. Intell. Syst., vol. 2023, p. 3160184, Feb. 2023. doi: 10.1155/2023/3160184
|
[26] |
M. S. Kıran and M. Gündüz, “A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems,” Appl. Soft Comput., vol. 13, no. 4, pp. 2188–2203, Apr. 2013. doi: 10.1016/j.asoc.2012.12.007
|
[27] |
S. Chamchuen, A. Siritaratiwat, P. Fuangfoo, P. Suthisopapan, and P. Khunkitti, “High-accuracy power quality disturbance classification using the adaptive ABC-PSO as optimal feature selection algorithm,” Energies, vol. 14, no. 5, pp. 1238, Feb. 021.
|
[28] |
S. Kumar and D. K. Chaturvedi, “Tuning of particle swarm optimization parameter using fuzzy logic,” in Proc. Int. Conf. Communication Systems and Network Technologies, Katra, India, 2011, pp. 174−179.
|
[29] |
A. M. Eltamaly, “A novel strategy for optimal PSO control parameters determination for PV energy systems,” Sustainability, vol. 13, no. 2, p. 1008, Jan. 2021. doi: 10.3390/su13021008
|
[30] |
J. Sun, X. Wu, V. Palade, W. Fang, C. H. Lai, and W. Xu, “Convergence analysis and improvements of quantum-behaved particle swarm optimization,” Inf. Sci., vol. 193, pp. 81–103, Jun. 2012. doi: 10.1016/j.ins.2012.01.005
|
[31] |
D. Hu, X. Qiu, Y. Liu, and X. Zhou, “Probabilistic convergence analysis of the stochastic particle swarm optimization model without the stagnation assumption,” Inf. Sci., vol. 547, pp. 996–1007, Feb. 2021. doi: 10.1016/j.ins.2020.08.072
|
[32] |
X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
|
[33] |
J. Chen, X. Luo, and M. Zhou, “Hierarchical particle swarm optimization-incorporated latent factor analysis for large-scale incomplete matrices,” IEEE Trans. Big Data, vol. 8, no. 6, pp. 1524–1536, Dec. 2022.
|
[34] |
Y. Yuan, R. Wang, G. Yuan, and L. Xin, “An adaptive divergence-based non-negative latent factor model,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 10, pp. 6475–6487, Oct. 2023. doi: 10.1109/TSMC.2023.3282950
|
[35] |
I. M. de Mendoncça, I. C. S. Junior, and A. L. M. Marcato, “Static planning of the expansion of electrical energy transmission systems using particle swarm optimization,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 234–244, Sep. 2014. doi: 10.1016/j.ijepes.2014.02.028
|
[36] |
Z. Li, “Intelligent electrical engineering automation on account of particle swarm optimization (PSO) algorithm,” J. Phys. Conf. Ser., vol. 2355, no. 1, p. 012013, Oct. 2022. doi: 10.1088/1742-6596/2355/1/012013
|
[37] |
K. A. Danapalasingam, “Robust autonomous helicopter stabilizer tuned by particle swarm optimization,” Int. J. Pattern Recognit. Artif. Intell., vol. 28, no. 1, p. 1459002, Feb. 2014. doi: 10.1142/S0218001414590022
|
[38] |
W. Wu, B. Yao, J. Huang, S. Sun, F. Zhang, Z. He, T. Tang, and R. Gao, “Optimal temperature and humidity control for autonomous control system based on PSO-BP neural networks,” IET Control Theory Appl., vol. 17, no. 15, pp. 2097–2109, Oct. 2023. doi: 10.1049/cth2.12467
|
[39] |
V. Hajipour and S. H. R. Pasandideh, “Proposing an adaptive particle swarm optimization for a novel bi-objective queuing facility location model,” Econ. Comput. Econ. Cybern. Studies Res., vol. 46, no. 3, pp. 223−240, 2012.
|
[40] |
Z. Xing, J. Zhu, Z. Zhang, Y. Qin, and L. Jia, “Energy consumption optimization of tramway operation based on improved PSO algorithm,” Energy, vol. 258, p. 124848, Nov. 2022. doi: 10.1016/j.energy.2022.124848
|
[41] |
P. García-Triviño, F. Llorens-Iborra, C. A. García-Vázquez, A. J. Gil-Mena, L. M. Fernández-Ramírez, and F. Jurado, “Long-term optimization based on PSO of a grid-connected renewable energy/battery/hydrogen hybrid system,” Int. J. Hydrogen Energy, vol. 39, no. 21, pp. 10805–10816, Jul. 2014. doi: 10.1016/j.ijhydene.2014.05.064
|
[42] |
W. Fan, Z. Hu, and V. Veerasamy, “PSO-Based model predictive control for load frequency regulation with wind turbines,” Energies, vol. 15, no. 21, p. 8219, Nov. 2022. doi: 10.3390/en15218219
|
[43] |
M. Khajeh, M. Kaykhaii, and A. Sharafi, “Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples,” J. Ind. Eng. Chem., vol. 19, no. 5, pp. 1624–1630, Sep. 2013. doi: 10.1016/j.jiec.2013.01.033
|
[44] |
V. B. Mazza, R. Bustamante, A. R. F. de Aguiar Martins, L. A. C. Teixeira, and B. F. dos Santos, “Modelling and optimization of the ferrous to ferric sulphate conversion with hydrogen peroxide using polynomial-PSO and PSO-ANNs models,” Can. J. Chem. Eng., vol. 100, no. 12, pp. 3653–3668, Dec. 2022. doi: 10.1002/cjce.24349
|
[45] |
S. Nouyan, “Agent-based approach to dynamic task allocation,” in Proc. 3rd Int. Workshop on Ant Algorithms, Brussels, Belgium, pp. 28−39, 2002.
|
[46] |
M. Dorigo and T. Stutzle, Ant Colony Optimization. Cambridge: MIT Press, 2004.
|
[47] |
S. Lorpunmanee, M. N. Sap, A. H. Abdullah, and C. Chompoo-Inwai, “An ant colony optimization for dynamic job scheduling in grid environment,” Int. J. Inf. Control Comput. Sci., vol. 1, no. 4, pp. 207−214, 2007.
|
[48] |
M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, “Cloud task scheduling based on ant colony optimization,” in Proc. Int. Conf. Computer Engineering & Systems, Cairo, Egypt, 2013, pp. 64−69.
|
[49] |
P. Azad and N. J. Navimipour, “An energy-aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm,” Int. J. Cloud Appl. Comput., vol. 7, no. 4, pp. 20−40, 2017.
|
[50] |
M. Guntsch, M. Middendorf, and H. Schmeck, “An ant colony optimization approach to dynamic TSP,” in Proc. 3rd Annu. Conf. Genetic and Evolutionary Computation, San Francisco, USA, 2001, pp. 860−867.
|
[51] |
J. Yang, X. Shi, M. Marchese, and Y. Liang, “An ant colony optimization method for generalized TSP problem,” Prog. Nat. Sci., vol. 18, no. 11, pp. 1417–1422, Nov. 2008. doi: 10.1016/j.pnsc.2008.03.028
|
[52] |
Y. Wang and Z. Han, “Ant colony optimization for traveling salesman problem based on parameters optimization,” Appl. Soft Comput., vol. 107, p. 107439, Aug. 2021. doi: 10.1016/j.asoc.2021.107439
|
[53] |
V. A. Pham and A. Karmouch, “Mobile software agents: An overview,” IEEE Commun. Mag., vol. 36, no. 7, pp. 26–37, Jul. 1998. doi: 10.1109/35.689628
|
[54] |
M. Guntsch and M. Middendorf, “Applying population based ACO to dynamic optimization problems,” in Proc. 3rd Int. Workshop on Ant Algorithms, Brussels, Belgium, 2002, pp. 111−122.
|
[55] |
M. Guntsch and M. Middendorf, “A population based approach for ACO,” in Proc. Applications of Evolutionary Computing, Kinsale, Ireland, 2002, pp. 72−81.
|
[56] |
M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E. G. Talbi, “A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests,” Appl. Soft Comput., vol. 12, no. 4, pp. 1426–1439, Apr. 2012. doi: 10.1016/j.asoc.2011.10.023
|
[57] |
M. Okulewicz and J. Mańdziuk, “Two-phase multi-swarm PSO and the dynamic vehicle routing problem,” in Proc. IEEE Symp. Computational Intelligence for Human-like Intelligence, Orlando, FL, USA, 2014, pp. 1−8.
|
[58] |
R. Skinderowicz, “Ant colony system with selective pheromone memory for TSP,” in Proc. 4th Int. Conf. Computational Collective Intelligence, Ho Chi Minh City, Vietnam, 2012, pp. 483−492.
|
[59] |
R. Skinderowicz, “Ant colony system with selective pheromone memory for SOP,” in Proc. 5th Int. Conf. Computational Collective Intelligence, Craiova, Romania, 2013, pp. 711−720.
|
[60] |
M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors,” Appl. Soft Comput., vol. 13, no. 10, pp. 4023–4037, Oct. 2013. doi: 10.1016/j.asoc.2013.05.022
|
[61] |
S. Gao, Y. Wang, J. Cheng, Y. Inazumi, and Z. Tang, “Ant colony optimization with clustering for solving the dynamic location routing problem,” Appl. Math. Comput., vol. 285, pp. 149–173, Jul. 2016.
|
[62] |
O. Montiel-Ross, R. Sepúlveda, O. Castillo, and P. Melin, “Ant colony test center for planning autonomous mobile robot navigation,” Comput. Appl. Eng. Educ., vol. 21, no. 2, pp. 214–229, Jun. 2013. doi: 10.1002/cae.20463
|
[63] |
M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, and P. Melin, “Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation,” Appl. Soft Comput., vol. 9, no. 3, pp. 1102–1110, Jun. 2009. doi: 10.1016/j.asoc.2009.02.014
|
[64] |
P. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, “Particle swarm and ant colony algorithms hybridized for improved continuous optimization,” Appl. Math. Comput., vol. 188, no. 1, pp. 129–142, May 2007.
|
[65] |
A. Kaveh and S. Talatahari, “A particle swarm ant colony optimization for truss structures with discrete variables,” J. Constr. Steel Res., vol. 65, no. 8−9, pp. 1558–1568, Aug.-Sep. 2009. doi: 10.1016/j.jcsr.2009.04.021
|
[66] |
Z. Yang, M. Liu, J. Xiu, and C. Liu, “Study on cloud resource allocation strategy based on particle swarm ant colony optimization algorithm,” in Proc. IEEE 2nd Int. Conf. Cloud Computing and Intelligence Systems, Hangzhou, China, 2012, pp. 488−491.
|
[67] |
M. Mahi, Ö Kaan Baykan, and H. Kodaz, “A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem,” Appl. Soft Comput., vol. 30, pp. 484–490, May 2015. doi: 10.1016/j.asoc.2015.01.068
|
[68] |
R. H. M. Aly, K. H. Rahouma, and H. F. A. Hamed, “Brain tumors diagnosis and prediction based on applying the learning metaheuristic optimization techniques of particle swarm, ant colony and bee colony,” Procedia Comput. Sci., vol. 163, pp. 165–179, Mar. 2019. doi: 10.1016/j.procs.2019.12.098
|
[69] |
D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Erciyes University, Kayseri, Türkiye, Technical report-tr06, 2005.
|
[70] |
D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm,” J. Global Optim., vol. 39, no. 3, pp. 459–471, Nov. 2007. doi: 10.1007/s10898-007-9149-x
|
[71] |
D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Appl. Soft Comput., vol. 8, no. 1, pp. 687–697, Jan. 2008. doi: 10.1016/j.asoc.2007.05.007
|
[72] |
D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput., vol. 214, no. 1, pp. 108–132, Aug. 2009.
|
[73] |
D. J. Mala, M. Kamalapriya, R. Shobana, and V. Mohan, “A non-pheromone based intelligent swarm optimization technique in software test suite optimization,” in Proc. Int. Conf. Intelligent Agent & Multi-Agent Systems, Chennai, India, 2009, pp. 1−5.
|
[74] |
K. R. Krishnanand, S. K. Nayak, B. K. Panigrahi, and P. K. Rout, “Comparative study of five bio-inspired evolutionary optimization techniques,” in Proc. World Congr. Nature & Biologically Inspired Computing, Coimbatore, India, 2009, pp. 1231−1236.
|
[75] |
H. Li, K. Liu, and X. Li, “A comparative study of artificial bee colony, bees algorithms and differential evolution on numerical benchmark problems,” in Proc. 5th Int. Symp. Intelligence Computation and Applications, Wuhan, China, 2010, pp. 198−207.
|
[76] |
B. Akay and D. Karaboga, “A modified Artificial Bee Colony algorithm for real-parameter optimization,” Inf. Sci., vol. 192, pp. 120–142, Jun. 2012. doi: 10.1016/j.ins.2010.07.015
|
[77] |
D. Zhang, X. Guan, Y. Tang, and Y. Tang, “Modified artificial bee colony algorithms for numerical optimization,” in Proc. 3rd Int. Workshop on Intelligent Systems and Applications, Wuhan, China, 2011, pp. 1−4.
|
[78] |
H. Gao, Z. Fu, C.-M. Pun, J. Zhang, and S. Kwong, “An efficient artificial bee colony algorithm with an improved linkage identification method,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4400–4414, Jun. 2022. doi: 10.1109/TCYB.2020.3026716
|
[79] |
C. Wang, P. Shang, and P. Shen, “An improved artificial bee colony algorithm based on Bayesian estimation,” Complex Intell. Syst., vol. 8, no. 6, pp. 4971–4991, Dec. 2022. doi: 10.1007/s40747-022-00746-1
|
[80] |
M. H. Kashan, N. Nahavandi, and A. H. Kashan, “DisABC: A new artificial bee colony algorithm for binary optimization,” Appl. Soft Comput., vol. 12, no. 1, pp. 342–352, Jan. 2012. doi: 10.1016/j.asoc.2011.08.038
|
[81] |
M. S. Kiran, “A binary artificial bee colony algorithm and its performance assessment,” Expert Syst. Appl., vol. 175, p. 114817, Aug. 2021. doi: 10.1016/j.eswa.2021.114817
|
[82] |
D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colony algorithm for traveling salesman problem,” in Proc. Int. Symp. Innovations in Intelligent Systems and Applications, Istanbul, Turkey, 2011, pp. 50−53.
|
[83] |
I. Khan, M. K. Maiti, and K. Basuli, “Multi-objective traveling salesman problem: An ABC approach,” Appl. Intell., vol. 50, no. 11, pp. 3942–3960, Nov. 2020. doi: 10.1007/s10489-020-01713-4
|
[84] |
J. Q. Li, Q. K. Pan, and K. Z. Gao, “Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems,” Int. J. Adv. Manuf. Technol., vol. 55, no. 9−12, pp. 1159–1169, Aug. 2011. doi: 10.1007/s00170-010-3140-2
|
[85] |
K. Sharma and P. C. Gupta, “Fully informed ABC algorithm for large scale job shop scheduling problem,” Int. J. Intell. Eng. Inf., vol. 10, no. 2, pp. 105–118, Sep. 2022.
|
[86] |
H. Narasimhan, “Parallel artificial bee colony (PABC) algorithm,” in Proc. World Congr. Nature & Biologically Inspired Computing, Coimbatore, India, 2009, pp. 306−311.
|
[87] |
N. Tasşpınar and M. Yıldırım, “A novel parallel artificial bee colony algorithm and its PAPR reduction performance using SLM scheme in OFDM and MIMO-OFDM systems,” IEEE Commun. Lett., vol. 19, no. 10, pp. 1830–1833, Oct. 2015. doi: 10.1109/LCOMM.2015.2465967
|
[88] |
J. Zhou and X. Yao, “Multi-population parallel self-adaptive differential artificial bee colony algorithm with application in large-scale service composition for cloud manufacturing,” Appl. Soft Comput., vol. 56, pp. 379–397, Jul. 2017. doi: 10.1016/j.asoc.2017.03.017
|
[89] |
J.-Q. Li, M.-X. Song, L. Wang, P.-Y. Duan, Y.-Y. Han, H.-Y. Sang, and Q.-K. Pan, “Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2425–2439, Jun. 2019.
|
[90] |
J.-H. Lin and L.-R. Huang, “Chaotic bee swarm optimization algorithm for path planning of mobile robots,” in Proc. 10th WSEAS Int. Conf. Evolutionary Computing, Stevens Point, USA, 2009, pp. 84−89.
|
[91] |
M. A. Contreras-Cruz, V. Ayala-Ramirez, and U. H. Hernandez-Belmonte, “Mobile robot path planning using artificial bee colony and evolutionary programming,” Appl. Soft Comput., vol. 30, pp. 319–328, May 2015. doi: 10.1016/j.asoc.2015.01.067
|
[92] |
N. Alpkiray, Y. Torun, and O. Kaynar, “Probabilistic roadmap and artificial bee colony algorithm cooperation for path planning,” in Proc. Int. Conf. Artificial Intelligence and Data Processing, Malatya, Turkey, 2018, pp. 1−6.
|
[93] |
Z. Han, M. Chen, S. Shao, and Q. Wu, “Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning,” Aerosp. Sci. Technol., vol. 122, p. 107374, Mar. 2022. doi: 10.1016/j.ast.2022.107374
|
[94] |
M. Marzband, F. Azarinejadian, M. Savaghebi, and J. M. Guerrero, “An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with Markov chain,” IEEE Syst. J., vol. 11, no. 3, pp. 1712–1722, Sep. 2017. doi: 10.1109/JSYST.2015.2422253
|
[95] |
K. Roy, K. K. Mandal, and A. C. Mandal, “Modeling and managing of micro grid connected system using improved artificial bee colony algorithm,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 50–58, Feb. 2016. doi: 10.1016/j.ijepes.2015.08.003
|
[96] |
H. U. R. Habib, U. Subramaniam, A. Waqar, B. S. Farhan, K. M. Kotb, and S. Wang, “Energy cost optimization of hybrid renewables based V2G microgrid considering multi objective function by using artificial bee colony optimization,” IEEE Access, vol. 8, pp. 62076–62093, Mar. 2020. doi: 10.1109/ACCESS.2020.2984537
|
[97] |
J. Li, R. Zhang, and Y. Yang, “Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment,” PLoS One, vol. 12, no. 11, p. e0188291, Nov. 2017. doi: 10.1371/journal.pone.0188291
|
[98] |
A. Q. Faridi, S. Sharma, A. Shukla, R. Tiwari, and J. Dhar, “Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment,” Intell. Serv. Robot., vol. 11, no. 2, pp. 171–186, Apr. 2018. doi: 10.1007/s11370-017-0244-7
|
[99] |
A. C. Nichols, S. Phillips, and A. A. Soderlund, “On resilience-based optimization of closeproximity multi-satellite coordination via an artificial honeybee colony algorithm,” in Proc. AIAA SCITECH 2023 Forum, National Harbor, 2023, pp. 2358.
|
[100] |
R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An overview,” Swarm Intell., vol. 1, no. 1, pp. 33–57, Jun. 2007. doi: 10.1007/s11721-007-0002-0
|
[101] |
Y. Jiang, W. Huang, and L. Chen, “Applying multi-swarm accelerating particle swarm optimization to dynamic continuous functions,” in Proc. 2nd Int. Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, 2009, pp. 710−713.
|
[102] |
X. Xia, Y. Tang, B. Wei, Y. Zhang, L. Gui, and X. Li, “Dynamic multi-swarm global particle swarm optimization,” Computing, vol. 102, no. 7, pp. 1587–1626, Jul. 2020. doi: 10.1007/s00607-019-00782-9
|
[103] |
L. Cao, L. Xu, and E. D. Goodman, “A collaboration-based particle swarm optimizer with history-guided estimation for optimization in dynamic environments,” Expert Syst. Appl., vol. 120, pp. 1–13, Apr. 2019. doi: 10.1016/j.eswa.2018.11.020
|
[104] |
A. Flori, H. Oulhadj, and P. Siarry, “Quantum particle swarm optimization: An auto-adaptive PSO for local and global optimization,” Comput. Optim. Appl., vol. 82, no. 2, pp. 525–559, Jun. 2022. doi: 10.1007/s10589-022-00362-2
|
[105] |
C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An adaptive multipopulation framework for locating and tracking multiple optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605, Apr. 2016. doi: 10.1109/TEVC.2015.2504383
|
[106] |
J. Qin, C. Huang, and Y. Luo, “Adaptive multi-swarm in dynamic environments,” Swarm Evol. Comput., vol. 63, p. 100870, Jun. 2021. doi: 10.1016/j.swevo.2021.100870
|
[107] |
Y. Li, Z.-H. Zhan, S. Lin, J. Zhang, and X. Luo, “Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems,” Inf. Sci., vol. 293, pp. 370–382, Feb. 2015. doi: 10.1016/j.ins.2014.09.030
|
[108] |
W. Ye, W. Feng, and S. Fan, “A novel multi-swarm particle swarm optimization with dynamic learning strategy,” Appl. Soft Comput., vol. 61, pp. 832–843, Dec. 2017. doi: 10.1016/j.asoc.2017.08.051
|
[109] |
S. Nama, A. K. Saha, S. Chakraborty, A. H. Gandomi, and L. Abualigah, “Boosting particle swarm optimization by backtracking search algorithm for optimization problems,” Swarm Evol. Comput., vol. 79, p. 101304, Jun. 2023. doi: 10.1016/j.swevo.2023.101304
|
[110] |
M. R. Mohammadi and S. S. Ghidary, “Integrated PSO and line based representation approach for SLAM,” in Proc. ACM Symp. Applied Computing, New York, USA, 2011, pp. 1382−1388.
|
[111] |
W. Low, R. Nagarajan, and S. Yaacob, “Visual based SLAM using modified PSO,” in Proc. 6th Int. Colloq. Signal Processing & its Applications, Malacca, Malaysia, 2010, pp. 1−5.
|
[112] |
H.-C. Lee, S.-K. Park, J.-S. Choi, and B.-H. Lee, “PSO-FastSLAM: An improved FastSLAM framework using particle swarm optimization,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, San Antonio, USA, 2009, pp. 2763−2768.
|
[113] |
C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–279, Jun. 2004. doi: 10.1109/TEVC.2004.826067
|
[114] |
L. A. Márquez-Vega, M. Aguilera-Ruiz, and L. M. Torres-Treviño, “Multi-objective optimization of a quadrotor flock performing target zone search,” Swarm Evol. Comput., vol. 60, p. 100733, Feb. 2021. doi: 10.1016/j.swevo.2020.100733
|
[115] |
F. Sheikholeslami and N. J. Navimipour, “Service allocation in the cloud environments using multi-objective particle swarm optimization algorithm based on crowding distance,” Swarm Evol. Comput., vol. 35, pp. 53–64, Aug. 2017. doi: 10.1016/j.swevo.2017.02.007
|
[116] |
M. Dadgar, S. Jafari, and A. Hamzeh, “A PSO-based multi-robot cooperation method for target searching in unknown environments,” Neurocomputing, vol. 177, pp. 62–74, Feb. 2016. doi: 10.1016/j.neucom.2015.11.007
|
[117] |
D. Wang, H. Wang, and L. Liu, “Unknown environment exploration of multi-robot system with the FORDPSO,” Swarm Evol. Comput., vol. 26, pp. 157–174, Feb. 2016. doi: 10.1016/j.swevo.2015.09.004
|
[118] |
J. M. Hereford, M. Siebold, and S. Nichols, “Using the particle swarm optimization algorithm for robotic search applications,” in Proc. IEEE Swarm Intelligence Symp., Honolulu, USA, 2007, pp. 53−59.
|
[119] |
J. Pugh and A. Martinoli, “Inspiring and modeling multi-robot search with particle swarm optimization,” in Proc. IEEE Swarm Intelligence Symp., Honolulu, USA, 2007, pp. 332−339.
|
[120] |
S. Doctor, G. K. Venayagamoorthy, and V. G. Gudise, “Optimal PSO for collective robotic search applications,” in Proc. Congr. Evolutionary Computation, Portland, USA, 2004, pp. 1390−1395.
|
[121] |
Y. Fu, M. Ding, C. Zhou, and H. Hu, “Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 43, no. 6, pp. 1451–1465, Nov. 2013. doi: 10.1109/TSMC.2013.2248146
|
[122] |
D.-W. Gong, J.-H. Zhang, and Y. Zhang, “Multi-objective particle swarm optimization for robot path planning in environment with danger sources,” J. Comput., vol. 6, no. 8, pp. 1554–1561, Aug. 2011.
|
[123] |
Y. Zhang, D.-W. Gong, and J.-H. Zhang, “Robot path planning in uncertain environment using multi-objective particle swarm optimization,” Neurocomputing, vol. 103, pp. 172–185, Mar. 2013. doi: 10.1016/j.neucom.2012.09.019
|
[124] |
A. Z. Nasrollahy and H. H. S. Javadi, “Using particle swarm optimization for robot path planning in dynamic environments with moving obstacles and target,” in Proc. 3rd UKSim European Symp. Computer Modeling and Simulation, Athens, Greece, 2009, pp. 60−65.
|
[125] |
E. G. Kaigom, T. J. Jung, and J. Roßmann, “Optimal motion planning of a space robot with base disturbance minimization,” in Proc. 11th Symp. Advanced Space Technologies in Robotics and Automation, Noordwijk, Netherlands, 2011, pp. 1−6.
|
[126] |
Ö Ekrem and B. Aksoy, “Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm,” Eng. Appl. Artif. Intell., vol. 122, p. 106099, Jun. 2023. doi: 10.1016/j.engappai.2023.106099
|
[127] |
P. Xin, J. Rong, Y. Yang, D. Xiang, and Y. Xiang, “Trajectory planning with residual vibration suppression for space manipulator based on particle swarm optimization algorithm,” Adv. Mech. Eng., vol. 9, no. 4, pp. 1–16, Jan. 2017.
|
[128] |
J.-J. Kim and J.-J. Lee, “Trajectory optimization with particle swarm optimization for manipulator motion planning,” IEEE Trans. Ind. Inf., vol. 11, no. 3, pp. 620–631, Jun. 2015. doi: 10.1109/TII.2015.2416435
|
[129] |
R. Palm and A. Bouguerra, “Particle swarm optimization of potential fields for obstacle avoidance,” in Proc. Recent Advances in Robotics and Mechatronics, Galati, Romania, 2013, pp. 117−123.
|
[130] |
Y. Hao, W. Zu, and Y. Zhao, “Real-time obstacle avoidance method based on polar coordination particle swarm optimization in dynamic environment,” in Proc. 2nd IEEE Conf. Industrial Electronics and Applications, Harbin, China, 2007, pp. 1612−1617.
|
[131] |
H.-Q. Min, J.-H. Zhu, and X.-J. Zheng, “Obstacle avoidance with multi-objective optimization by PSO in dynamic environment,” in Proc. Int. Conf. Machine Learning and Cybernetics, Guangzhou, China, 2005, pp. 2950−2956.
|
[132] |
B. He, L. Ying, S. Zhang, X. Feng, T. Yan, R. Nian, and Y. Shen, “Autonomous navigation based on unscented-FastSLAM using particle swarm optimization for autonomous underwater vehicles,” Measurement, vol. 71, pp. 89–101, Jul. 2015. doi: 10.1016/j.measurement.2015.02.026
|
[133] |
X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: Detection and response to dynamic systems,” in Proc. Congr. Evolutionary Computation, Honolulu, USA, 2002, pp. 1666−1670.
|
[134] |
L. Liu, H. Xu, B. Wang, R. Zhang, and J. Chen, “A study on particle swarm algorithm based on restart strategy and adaptive dynamic mechanism,” Electronics, vol. 11, no. 15, p. 2339, Jul. 2022. doi: 10.3390/electronics11152339
|
[135] |
Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 303–317, Jun. 2005. doi: 10.1109/TEVC.2005.846356
|
[136] |
A. S. Rakitianskaia and A. P. Engelbrecht, “Training feedforward neural networks with dynamic particle swarm optimisation,” Swarm Intell., vol. 6, no. 3, pp. 233–270, Sep. 2012. doi: 10.1007/s11721-012-0071-6
|
[137] |
H. Yu, Y. Tan, C. Sun, and J. Zeng, “A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization,” Knowl.-Based Syst., vol. 163, pp. 14–25, Jan. 2019. doi: 10.1016/j.knosys.2018.08.010
|
[138] |
M. Greeff and A. P. Engelbrecht, “Dynamic multi-objective optimisation using PSO,” in Multi-Objective Swarm Intelligent Systems: Theory & Experiences, N. Nedjah, L. S. Coelho, and L. M. Mourelle, Berlin, Germany: Springer, 2010, pp. 105−123.
|
[139] |
M. S. Couceiro, R. P. Rocha, and N. M. F. Ferreira, “A novel multi-robot exploration approach based on particle swarm optimization algorithms,” in Proc. IEEE Int. Symp. Safety, Security, and Rescue Robotics, Kyoto, Japan, 2011, pp. 327−332.
|
[140] |
M. S. Couceiro, R. P. Rocha, and N. M. F. Ferreira, “Ensuring ad hoc connectivity in distributed search with robotic darwinian particle swarms,” in Proc. IEEE Int. Symp. Safety, Security, and Rescue Robotics, Kyoto, Japan, 2011, pp. 284−289.
|
[141] |
M. S. Couceiro, R. P. Rocha, N. F. F. Ferreira, and J. A. T. Machado, “Introducing the fractional-order darwinian PSO,” Signal Image Video Process., vol. 6, no. 3, pp. 343–350, Sep. 2012. doi: 10.1007/s11760-012-0316-2
|
[142] |
U. Boryczka and Ł Strąk, “A hybrid discrete particle swarm optimization with pheromone for dynamic traveling salesman problem,” in Proc. 4th Int. Conf. Computational Collective Intelligence, Ho Chi Minh City, Vietnam, 2012, pp. 503−512.
|
[143] |
U. Boryczka and Ł. Strąk, “Efficient DPSO neighbourhood for dynamic traveling salesman problem,” in Proc. 5th Int. Conf. Computational Collective Intelligence, Craiova, Romania, 2013, pp. 721−730.
|
[144] |
R. I. Lung and D. Dumitrescu, “A collaborative model for tracking optima in dynamic environments,” in Proc. IEEE Congr. Evolutionary Computation, Singapore, Singapore, 2007, pp. 564−567.
|
[145] |
S. Yang and C. Li, “A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 959–974, Dec. 2010. doi: 10.1109/TEVC.2010.2046667
|
[146] |
M. Kamosi, A. B. Hashemi, and M. R. Meybodi, “A new particle swarm optimization algorithm for dynamic environments,” in Proc. 1st Int. Conf. Swarm, Evolutionary, and Memetic Computing, Chennai, India, 2010, pp. 129−138.
|
[147] |
H. Wang, N. Wang, and D. Wang, “Multi-swarm optimization algorithm for dynamic optimization problems using forking,” in Proc. Chinese Control and Decision Conf., Yantai, China, 2008, pp. 2415−2419.
|
[148] |
M. Li, H. Chen, X. Wang, N. Zhong, and S. Lu, “An improved particle swarm optimization algorithm with adaptive inertia weights,” Int. J. Inf. Technol. Decis. Making, vol. 18, no. 3, pp. 833–866, May 2019. doi: 10.1142/S0219622019500147
|
[149] |
R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 204–210, Jun. 2004. doi: 10.1109/TEVC.2004.826074
|
[150] |
J. C. Tillett, T. M. Rao, F. Sahin, and R. M. Rao, “Darwinian particle swarm optimization,” in Proc. 2nd Indian Int. Conf. Artificial Intelligence, Pune, India, 2005, pp. 1474−1487.
|
[151] |
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016. doi: 10.1109/TRO.2016.2624754
|
[152] |
C. Kim, R. Sakthivel, and W. K. Chung, “Unscented FastSLAM: A robust and efficient solution to the SLAM problem,” IEEE Trans. Robot., vol. 24, no. 4, pp. 808–820, Aug. 2008. doi: 10.1109/TRO.2008.924946
|
[153] |
E. Şahin, “Swarm robotics: From sources of inspiration to domains of application,” in Proc. Int. Workshop on Swarm Robotics, Santa Monica, USA, 2004, pp. 10−20.
|
[154] |
D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige, “Many robots make short work: Report of the SRI international mobile robot team,” AI Mag., vol. 18, no. 1, pp. 55, 1997.
|
[155] |
G. Beni, “From swarm intelligence to swarm robotics,” in Proc. Int. Workshop on Swarm Robotics, Santa Monica, USA, 2004, pp. 1−9.
|
[156] |
N. Nedjah and L. S. Junior, “Review of methodologies and tasks in swarm robotics towards standardization,” Swarm Evol. Comput., vol. 50, p. 100565, Nov. 2019. doi: 10.1016/j.swevo.2019.100565
|
[157] |
R. M. de Mendonça, N. Nedjah, and L. de Macedo Mourelle, “Efficient distributed algorithm of dynamic task assignment for swarm robotics,” Neurocomputing, vol. 172, pp. 345–355, Jan. 2016. doi: 10.1016/j.neucom.2015.05.117
|
[158] |
Q. Tang and P. Eberhard, “A PSO-based algorithm designed for a swarm of mobile robots,” Struct. Multidiscip. Optim., vol. 44, no. 4, pp. 483–498, Oct. 2011. doi: 10.1007/s00158-010-0618-3
|
[159] |
A. O. de Sá, N. Nedjah, and L. de Macedo Mourelle, “Distributed efficient localization in swarm robotic systems using swarm intelligence algorithms,” Neurocomputing, vol. 172, pp. 322–336, Jan. 2016. doi: 10.1016/j.neucom.2015.03.099
|
[160] |
T. Balch, “Communication, diversity and learning: Cornerstones of swarm behavior,” in Proc. Int. Workshop on Swarm Robotics, Santa Monica, USA, 2004, pp. 21−30.
|
[161] |
J. Pugh and A. Martinoli, “Multi-robot learning with particle swarm optimization,” in Proc. 5th Int. Joint Conf. Autonomous Agents and Multiagent Systems, Hakodate, Japan, 2006, pp. 441−448.
|
[162] |
R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004. doi: 10.1109/TAC.2004.834113
|
[163] |
Q. Hui and W. M. Haddad, “Distributed nonlinear control algorithms for network consensus,” Automatica, vol. 44, no. 9, pp. 2375–2381, Sep. 2008. doi: 10.1016/j.automatica.2008.01.011
|
[164] |
Q. Hui, W. M. Haddad, and S. P. Bhat, “On robust control algorithms for nonlinear network consensus protocols,” Int. J. Robust Nonlin. Control, vol. 20, no. 3, pp. 269–284, Feb. 2010. doi: 10.1002/rnc.1426
|
[165] |
Q. Hui, W. M. Haddad, and S. P. Bhat, “Finite-time semistability and consensus for nonlinear dynamical networks,” IEEE Trans. Autom. Control, vol. 53, no. 8, pp. 1887–1900, Sep. 2008. doi: 10.1109/TAC.2008.929392
|
[166] |
W. M. Haddad, J. Lee, and S. P. Bhat, “Asymptotic and finite-time semistability for nonlinear discrete-time systems with application to network consensus,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 766–781, Feb. 2023. doi: 10.1109/TAC.2022.3142189
|
[167] |
W. M. Haddad, T. Rajpurohit, and X. Jin, “Stochastic semistability for nonlinear dynamical systems with application to consensus on networks with communication uncertainty,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 2826–2841, Jul. 2020. doi: 10.1109/TAC.2019.2934430
|
[168] |
W. M. Haddad and J. Lee, “Lyapunov theorems for semistability of discrete-time stochastic systems with application to network consensus with random communication noise,” in Proc. 29th Mediterranean Conf. Control and Automation, Puglia, Italy, 2021, pp. 892−897.
|
[169] |
G. Valentini, H. Hamann, and M. Dorigo, “Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off,” in Proc. Int. Conf. Autonomous Agents and Multiagent Systems, Istanbul, Turkey, 2015, pp. 1305−1314.
|
[170] |
G. Valentini, H. Hamann, and M. Dorigo, “Self-organized collective decision-making in a 100-robot swarm,” in Proc. 29th AAAI Conf. Artificial Intelligence, Austin, USA, 2015, pp. 4216−4217.
|
[171] |
G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo, “Collective decision with 100 kilobots: Speed versus accuracy in binary discrimination problems,” Auton. Agent. Multi-Agent Syst., vol. 30, no. 3, pp. 553–580, May 2016. doi: 10.1007/s10458-015-9323-3
|
[172] |
X. Chen and Y. Li, “Smooth path planning of a mobile robot using stochastic particle swarm optimization,” in Proc. Int. Conf. Mechatronics and Automation, Luoyang, China, 2006, pp. 1722−1727.
|
[173] |
R. K. Mandava, S. Bondada, and P. R. Vundavilli, “An optimized path planning for the mobile robot using potential field method and PSO algorithm,” in Soft Computing for Problem Solving, J. C. Bansal, K. N. Das, A. Nagar, K. Deep, and A. K. Ojha, Eds. Singapore, Singapore: Springer, 2019, pp. 139−150.
|
[174] |
M. Wang, J. Luo, and U. Walter, “Trajectory planning of free-floating space robot using particle swarm optimization (PSO),” Acta Astronaut., vol. 112, pp. 77–88, Jul.-Aug. 2015. doi: 10.1016/j.actaastro.2015.03.008
|
[175] |
M. Wang, J. Luo, J. Yuan, and U. Walter, “Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization,” Acta Astronaut., vol. 146, pp. 259–272, May 2018. doi: 10.1016/j.actaastro.2018.03.012
|
[176] |
B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for multi-robot and distributed sensor systems,” in Proc. Int. Conf. Advanced Robotics, Coimbra, Portugal, 2003, pp. 317−323.
|
[177] |
R. T. Vaughan and B. P. Gerkey, “Reusable robot software and the player/stage project,” in Software Engineering for Experimental Robotics, D. Brugali, Ed. Berlin, Germany: Springer, 2009, pp. 267−289.
|
[178] |
N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 2149−2154.
|
[179] |
J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk, “Comprehensive simulation of quadrotor UAVs using ROS and gazebo,” in Proc. 3rd Int. Conf. Simulation, Modeling, and Programming for Autonomous Robots, Tsukuba, Japan, 2012, pp. 400−411.
|
[180] |
M. M. M. Manhaes, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “UUV simulator: A gazebo-based package for underwater intervention and multi-robot simulation,” in Proc. MTS/IEEE Monterey, Monterey, USA, 2016), pp. 1−8.
|
[181] |
R. Vaughan, “Massively multi-robot simulation in stage,” Swarm Intell., vol. 2, no. 2−4, pp. 189–208, Dec. 2008. doi: 10.1007/s11721-008-0014-4
|
[182] |
O. Michel, “Webots: Symbiosis between virtual and real mobile robots,” in Proc 1st Int. Conf. Virtual Worlds, Paris, France, 1998, pp. 254−263.
|
[183] |
O. Michel, “Cyberbotics Ltd. Webots.TM: Professional mobile robot simulation,” Int. J. Adv. Robot. Syst., vol. 1, no. 1, p. 5, Mar. 2004. doi: 10.5772/5618
|
[184] |
S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: A robot simulator for research and education,” in Proc. IEEE Int. Conf. Robotics and Automation, Rome, Italy, 2009, pp. 1400−1405.
|
[185] |
C. Pinciroli, V. Trianni, R. O'Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo, “ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems,” Swarm Intell., vol. 6, no. 4, pp. 271–295, Dec. 2012. doi: 10.1007/s11721-012-0072-5
|
[186] |
C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong, “Argos: Practical many-antenna base stations,” in Proc. 18th Annu. Int. Conf. Mobile Computing and Networking, Istanbul, Turkey, 2012, pp. 53−64.
|
[187] |
A. Antoun, G. Valentini, E. Hocquard, B. Wiandt, V. Trianni, and M. Dorigo, “Kilogrid: A modular virtualization environment for the Kilobot robot,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, Korea (South), 2016, pp. 3809−3814.
|
[188] |
G. Valentini, A. Antoun, M. Trabattoni, B. Wiandt, Y. Tamura, E. Hocquard, V. Trianni, and M. Dorigo, “Kilogrid: A novel experimental environment for the Kilobot robot,” Swarm Intell., vol. 12, no. 3, pp. 245–266, Sep. 2018. doi: 10.1007/s11721-018-0155-z
|
[189] |
D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics research testbed,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, Singapore, 2017, pp. 1699−1706.
|
[190] |
S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerstedt, “The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems,” IEEE Control Syst. Mag., vol. 40, no. 1, pp. 26–44, Feb. 2020. doi: 10.1109/MCS.2019.2949973
|
[191] |
F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L. Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo, “SWARM-BOT: A new distributed robotic concept,” Auton. Robots, vol. 17, no. 2−3, pp. 193–221, Sep. 2004. doi: 10.1023/B:AURO.0000033972.50769.1c
|
[192] |
M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella, S. Nouyan, C. Ampatzis, J.-L. Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano, and L. M. Gambardella, “The SWARM-BOTS project,” in Proc. Int. Workshop on Swarm Robotics, Santa Monica, USA, 2004, pp. 31−44.
|
[193] |
R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-assembly in swarm-bots,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1115–1130, Dec. 2006. doi: 10.1109/TRO.2006.882919
|
[194] |
F. Mondada, E. Franzi, and A. Guignard, “The development of Khepera,” in Proc. 1st Int. Khepera Workshop, Paderborn, Germany, 1999, pp. 7−14.
|
[195] |
J. M. Soares, I. Navarro, and A. Martinoli, “The Khepera IV mobile robot: Performance evaluation, sensory data and software toolbox,” in Robot 2015: Second Iberian Robotics Conf., L. P. Reis, A. P. Moreira, P. U. Lima, and L. Montano, V. Muñoz-Martinez, Eds. Cham, Switzerland: Springer, 2016, pp. 767−781.
|
[196] |
M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot system for collective behaviors,” in Proc. IEEE Int. Conf. Robotics and Automation, Saint Paul, USA, 2012, pp. 3293−3298.
|
[197] |
M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, “Kilobot: A low cost robot with scalable operations designed for collective behaviors,” Robot. Auton. Syst., vol. 62, no. 7, pp. 966–975, Jul. 2014. doi: 10.1016/j.robot.2013.08.006
|
[198] |
G. Caprari, P. Balmer, R. Piguet, and R. Siegwart, “The autonomous micro robot “alice”: A platform for scientific and commercial applications,” in Proc. Int. Symp. Micromechatronics and Human Science. -Creation of New Industry, Nagoya, Japan, 1998, pp. 231−235.
|
[199] |
G. Caprari, T. Estier, and R. Siegwart, “Fascination of down scaling-Alice the sugar cube robot,” in Proc. IEEE Int. Conf. Robotics and Automation: Workshop on Mobile MicroRobots, San Francisco, USA, 2000.
|
[200] |
C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli, “Communication in a swarm of miniature robots: The e-puck as an educational tool for swarm robotics,” in Proc. Int. Workshop on Swarm Robotics, Rome, Italy, 2007, pp. 103−115.
|
[201] |
F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for education in engineering,” in Proc. Conf. Autonomous Robot Systems and Competitions, Castelo Branco, Portugal, 2009, pp. 59−65.
|
[202] |
J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-quadcopter swarm,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, Singapore, 2017, pp. 3299−3304.
|
[203] |
A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual inertial odometry swarm: An autonomous swarm of vision-based quadrotors,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1801–1807, Jul. 2018. doi: 10.1109/LRA.2018.2800119
|
[204] |
T. H. Chung, M. R. Clement, M. A. Day, K. D. Jones, D. Davis, and M. Jones, “Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs,” in Proc. IEEE Int. Conf. Robotics and Automation, Stockholm, Sweden, 2016, pp. 1255−1262.
|
[205] |
S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Trans. Robot., vol. 34, no. 4, pp. 837–855, Aug. 2018. doi: 10.1109/TRO.2018.2857475
|
[206] |
T. Stirling and D. Floreano, “Energy-time efficiency in aerial swarm deployment,” in Distributed Autonomous Robotic Systems, A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker, and K. Støy, Eds. Berlin, Germany: Springer, 2013, pp. 5−18.
|
[207] |
R. De Nardi and O. Holland, “UltraSwarm: A further step towards a flock of miniature helicopters,” in Proc. 2nd Int. Workshop on Swarm Robotics, Rome, Italy, 2006, pp. 116−128.
|
[208] |
R. Wood, “Fly, robot, fly,” IEEE Spectrum, vol. 45, no. 3, pp. 25–29, Mar. 2008. doi: 10.1109/MSPEC.2008.4457845
|
[209] |
N. Zhang, S. Chen, Z. Zhang, and H. Baoyin, “Two-stage dynamic-assignment optimization method for multispacecraft debris removal,” J. Guid. Control Dyn., vol. 45, no. 9, pp. 1750–1759, Sep. 2022. doi: 10.2514/1.G006602
|
[210] |
P. Kelly and R. Bevilacqua, “An optimized analytical solution for geostationary debris removal using solar sails,” Acta Astronaut., vol. 162, pp. 72–86, Sep. 2019. doi: 10.1016/j.actaastro.2019.05.055
|
[211] |
H. Wang, Z. Gu, Z. Zhang, and S. Hao, “Satellite constellation reconfiguration method using improved PSO algorithm for communication and navigation,” J. Phys. Conf. Ser., vol. 2033, p. 012038, Jun. 2021. doi: 10.1088/1742-6596/2033/1/012038
|
[212] |
X. Wang, H. Zhang, S. Bai, and Y. Yue, “Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method,” Acta Astronaut., vol. 178, pp. 595–605, Jan. 2021. doi: 10.1016/j.actaastro.2020.09.040
|
[213] |
X. Wu, Y. Yang, Y. Sun, Y. Xie, X. Song, and B. Huang, “Dynamic regional splitting planning of remote sensing satellite swarm using parallel genetic PSO algorithm,” Acta Astronaut., vol. 204, pp. 531–551, Mar. 2023. doi: 10.1016/j.actaastro.2022.09.020
|
[214] |
E. Y. Bejarbaneh, M. Masoumnezhad, D. J. Armaghani, and B. T. Pham, “Design of robust control based on linear matrix inequality and a novel hybrid PSO search technique for autonomous underwater vehicle,” Appl. Ocean Res., vol. 101, p. 102231, Aug. 2020. doi: 10.1016/j.apor.2020.102231
|
[215] |
T. Herlambang, D. Rahmalia, and T. Yulianto, “Particle swarm optimization (PSO) and ant colony optimization (ACO) for optimizing PID parameters on autonomous underwater vehicle (AUV) control system,” J. Phys.: Conf. Ser., vol. 1211, p. 012039, May 2019. doi: 10.1088/1742-6596/1211/1/012039
|
[216] |
F. R. Inácio, D. G. Macharet, and L. Chaimowicz, “PSO-based strategy for the segregation of heterogeneous robotic swarms,” J. Comput. Sci., vol. 31, pp. 86–94, Feb. 2019. doi: 10.1016/j.jocs.2018.12.008
|
[217] |
D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 440–458, Aug. 2006. doi: 10.1109/TEVC.2005.859468
|