Citation: | J. Yang, C. Wang, H. Hou, M. Wang, and X. Li, “Feature-driven variational mesh denoising,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124923 |
[1] |
Z. Liu, Y. Li, W. Wang, L. Liu, and R. Chen, “Mesh total generalized variation for denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 12, pp. 4418–4433, Dec. 2022. doi: 10.1109/TVCG.2021.3088118
|
[2] |
P. Wang, Z. Wang, S. Xin, X. Gao, W. Wang, and C. Tu, “Restricted delaunay triangulation for explicit surface reconstruction,” ACM Trans. Graph., vol. 41, no. 5, pp. 180:1–180:20, Oct. 2022.
|
[3] |
B. Huang, T. Zhang, and Y. Wang, “Pose2UV: Single-shot multiperson mesh recovery with deep UV prior,” IEEE Trans. Image Process., vol. 31, pp. 4679–4692, 2022. doi: 10.1109/TIP.2022.3187294
|
[4] |
J. Zhang, Y. Yao, and L. Quan, “Learning signed distance field for multi-view surface reconstruction,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 6525–6534.
|
[5] |
W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu, “Guided mesh normal filtering,” Comput. Graph. Forum, vol. 34, no. 7, pp. 23–34, Oct. 2015. doi: 10.1111/cgf.12742
|
[6] |
L. Zhou and C. D. Hansen, “A survey of colormaps in visualization,” IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 8, pp. 2051–2069, Aug. 2016. doi: 10.1109/TVCG.2015.2489649
|
[7] |
L. G. Liu, C. L. Tai, Z. P. Ji, and G. J. Wang, “Non-iterative approach for global mesh optimization,” Comput.-Aided Des., vol. 39, no. 9, pp. 772–782, Sept. 2007. doi: 10.1016/j.cad.2007.03.004
|
[8] |
J. Yang and C. Wang, “A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces,” Inverse Probl. Imag., vol. 11, no. 5, pp. 783–798, Oct. 2017. doi: 10.3934/ipi.2017037
|
[9] |
D. A. Field, “Laplacian smoothing and Delaunay triangulations,” Commun. Appl. Numer. Methods, vol. 4, no. 6, pp. 709–712, Nov./Dec. 1988. doi: 10.1002/cnm.1630040603
|
[10] |
G. Taubin, “A signal processing approach to fair surface design,” in Proc. Annu. Conf. Comput. Graph. Interactive Techn., Jul. 1995, pp. 351–358.
|
[11] |
M. Desbrun, M. Meyer, P. Schroder, and A.M. Barr, “Implicit fairing of irregular meshes using diffusion and curvature flow,” in Proc. Annu. Conf. Comput. Graph. Interactive Techn., Jul. 1999, pp. 709–712.
|
[12] |
S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” ACM Trans. Graph., vol. 22, no. 3, pp. 950–953, Jul. 2003. doi: 10.1145/882262.882368
|
[13] |
Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral normal filtering for mesh denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 10, pp. 1521–1530, Oct. 2013.
|
[14] |
X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Fast and effective feature-preserving mesh denoising,” IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 5, pp. 925–938, Sept.–Oct. 2007. doi: 10.1109/TVCG.2007.1065
|
[15] |
H. Zhang, C. Wu, J. Zhang, and J. Deng, “Variational mesh denoising using total variation and piecewise constant function space,” IEEE Trans. Vis. Comput. Graphics, vol. 21, no. 7, pp. 873–886, Jul. 2015. doi: 10.1109/TVCG.2015.2398432
|
[16] |
Z. Liu, R. J. Lai, H. Y. Zhang, and C. L. Wu, “Triangulated surface denoising using high order regularization with dynamic weights,” SIAM J. Sci. Comput., vol. 41, no. 1, pp. 1–26, 2019.
|
[17] |
D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Efficiently combing positions and normals for precise 3D geometry,” ACM Trans. Graph., vol. 24, no. 3, pp. 536–543, Jul. 2005. doi: 10.1145/1073204.1073226
|
[18] |
J. Diebel, S. Thrun, and M. Brunig, “A Bayesian method for probable surface reconstruction and decimation,” ACM Trans. Graph., vol. 25, no. 1, pp. 39–59, Jan. 2006. doi: 10.1145/1122501.1122504
|
[19] |
H. Fan, Y. Yu, and Q. Peng, “Robust feature-preserving mesh denoisng based on consistent subneighborhoods,” IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 2, pp. 312–324, Mar.–Apr. 2010. doi: 10.1109/TVCG.2009.70
|
[20] |
R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, “Decoupling noises and features via weighted $\ell_1$-analysis compressed sensing,” ACM Trans. Graph., vol. 33, no. 2, pp. 18:1–18:12, Mar. 2014.
|
[21] |
H. S. Kim, H. K. Choi, and K. H. Lee, “Feature detection of triangular meshes based on tensor voting theory,” Comput.-Aided Des., vol. 41, no. 1, pp. 47–58, Jan. 2009. doi: 10.1016/j.cad.2008.12.003
|
[22] |
X. Lu, Z. Deng, and W. Chen, “A robust scheme for feature-preserving mesh denoising,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 3, pp. 1181–1194, 1 Mar. 2016.
|
[23] |
M. Wei, L. Liang, W. M. Pang, J. Wang, W. Li, and H. Wu, “Tensor voting guided mesh denoising,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 931–945, Apr. 2017. doi: 10.1109/TASE.2016.2553449
|
[24] |
M. Wei, J. Huang, X. Xie, L. Liu, and J. Qin, “Mesh denoising guided by patch normal co-filtering via kernel low-rank recovery,” IEEE Trans. Visual Comput. Graphics, vol. 25, no. 10, pp. 2910–2926, Oct. 2019. doi: 10.1109/TVCG.2018.2865363
|
[25] |
C. Wang, Z. Liu, and L. Liu, “Feature-preserving Mumford–Shah mesh processing via nonsmooth nonconvex regularization,” Comput. Graph., vol. 106, pp. 222–236, Aug. 2022. doi: 10.1016/j.cag.2022.06.006
|
[26] |
S. Nousias, G. Arvanitis, A. S. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Industr. Inform., vol. 17, no. 2, pp. 980–990, Feb. 2021. doi: 10.1109/TII.2020.3000491
|
[27] |
W. Zhao, X. Liu, Y. Zhao, X. Fan, and D. Zhao, “NormalNet: Learning-based mesh normal denoising via local partition normalization,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 12, pp. 4697–4710, Dec. 2021. doi: 10.1109/TCSVT.2021.3099939
|
[28] |
X. Li, R. Li, L. Zhu, C. W. Fu, and P. A. Heng, “DNF-Net: A deep normal filtering network for mesh denoising,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 10, pp. 4060–4072, Oct. 2021. doi: 10.1109/TVCG.2020.3001681
|
[29] |
H. Zhang, Z. He, and X. Wang, “A novel mesh denoising method based on relaxed second-order total generalized variation,” SIAM J. Imaging Sci., vol. 15, no. 1, pp. 1–22, Jan. 2022. doi: 10.1137/21M1397945
|
[30] |
Y. Xing, J. Tan, P. Hong, Y. He, and M. Hu, “Mesh denoising based on recurrent neural networks,” Symmetry, vol. 14, no. 6, p. 1233, Jun. 2022. doi: 10.3390/sym14061233
|
[31] |
M. Armando, J. Franco, and E. Boyer, “Mesh denoising with facet graph convolutions,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 8, pp. 2999–3012, Aug. 2022. doi: 10.1109/TVCG.2020.3045490
|
[32] |
Y. Zhang, G. Shen, Q. Wang, Y. Qian, M. Wei, and J. Qin, “GeoBi-GNN: Geometry-aware bi-domain mesh denoising via graph neural networks,” Comput.-Aided Des., vol. 144, p. 103154, Mar. 2022. doi: 10.1016/j.cad.2021.103154
|
[33] |
Y. Shen, H. Fu, Z. Du, X. Chen, E. Burnaev, D. Zorin, K. Zhou, and Y. Zheng, “GCN-denoiser: Mesh denoising with graph convolutional networks,” ACM Trans. Graph., vol. 41, no. 1, pp. 1–14, Feb. 2022.
|
[34] |
S. Hattori, T. Yatagawa, Y. Ohtake, and H. Suzuki, “Learning self-prior for mesh denoising using dual graph convolutional networks,” in Proc. Euro. Conf. Comput. Vis., Nov. 2022, pp. 363–379.
|
[35] |
C. Wang, Z. Yan, W. Pedrycz, M. Zhou, and Z. Li, “A weighted fidelity and regularization-based method for mixed or unknown noise removal from images on graphs,” IEEE Trans. Image Process., vol. 29, no. 1, pp. 5229–5243, Dec. 2020.
|
[36] |
C. Wang, W. Pedrycz, J. Yang, M. Zhou, and Z. Li, “Wavelet frame-based fuzzy C-means clustering for segmenting images on graphs,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3938–3949, Sept. 2020. doi: 10.1109/TCYB.2019.2921779
|
[37] |
C. Wang, W. Pedrycz, Z. Li, M. Zhou, and S. S. Ge, “G-image segmentation: Similarity-preserving fuzzy C-means with spatial information constraint in wavelet space,” IEEE Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3887–3898, Dec. 2021. doi: 10.1109/TFUZZ.2020.3029285
|
[38] |
Y. Zhao, H. Qin, X. Zeng, J. Xu, and J. Dong, “Robust and effective mesh denoising using L0 sparse regularization,” Comput.-Aided Des., vol. 101, pp. 82–97, Aug. 2018. doi: 10.1016/j.cad.2018.04.001
|
[39] |
H. Zhang, Z. He, and X. Wang, “A novel mesh denoising method based on relaxed second-order total generalized variation,” SIAM J. Imaging Sci., vol. 15, no. 1, pp. 1–22, 2022. doi: 10.1137/21M1397945
|
[40] |
L. He and S. Schaefer, “Mesh denoising via L0 minimization,” ACM Trans. Graph., vol. 32, no. 4, pp. 64:1–64:8, Jul. 2013.
|
[41] |
J. Cai, B. Dong, and Z. Shen, “Image restorations: A wavelet frame based model for piecewise smooth functions and beyond,” Appl. Comput. Harmon. Anal., vol. 41, no. 1, pp. 94–138, Jul. 2016. doi: 10.1016/j.acha.2015.06.009
|
[42] |
B. Dong, Q. Jiang, C. Liu, and Z. Shen, “Multiscale representation of surfaces by tight wavelet frames with applications to denoising,” Appl. Comput. Harmon. Anal., vol. 41, no. 2, pp. 561–589, Sept. 2016. doi: 10.1016/j.acha.2015.03.005
|
[43] |
H. Ji, Y. Luo, and Z. Shen, “Image recovery via geometrically structured approximation,” Appl. Comput. Harmon. Anal., vol. 41, no. 1, pp. 75–93, Jul. 2016. doi: 10.1016/j.acha.2015.08.012
|
[44] |
P. Wang, Y. Liu, and X. Tong, “Mesh denoising via cascaded normal regression,” ACM Trans. Graph., vol. 35, no. 6, pp. 232:1–232:12, Dec. 2016.
|
[45] |
X. Luo, Y. Yuan, S. Chen, N. Zeng, and Z. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
|
[46] |
Y. Yuan, R. Wang, G. Yuan, and L. Xin, “An adaptive divergence-based non-negative latent factor model,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 10, pp. 6475–6487, Oct. 2023. doi: 10.1109/TSMC.2023.3282950
|
[47] |
Y. Yuan, J. Li, and X. Luo, “A fuzzy PID-incorporated stochastic gradient descent algorithm for fast and accurate latent factor analysis,” IEEE Trans. Fuzzy Syst., vol. 32, no. 7, pp. 4049–4061, Jul. 2024. doi: 10.1109/TFUZZ.2024.3389733
|