Citation: | S. Lou, C. Yang, Z. Liu, S. Wang, H. Zhang, and P. Wu, “Release power of mechanism and data fusion: A hierarchical strategy for enhanced MIQ-related modeling and fault detection in BFIP,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124821 |
[1] |
J. Zeng, C. Gao, and H. Su, “Data-driven predictive control for blast furnace ironmaking process,” Comput. Chem. Eng., vol. 34, no. 11, pp. 1854–1862, 2010. doi: 10.1016/j.compchemeng.2010.01.005
|
[2] |
Y. Zhang, P. Zhou, and G. Cui, “Multi-model based pso method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, 2018.
|
[3] |
Z. Chen, Z. Jiang, C. Yang, W. Gui, and Y. Sun, “Dust distribution study at the blast furnace top based on k–sε–up model,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 121–135, 2020.
|
[4] |
S. Lou, C. Yang, and P. Wu, “A local dynamic broad kernel stationary subspace analysis for monitoring blast furnace ironmaking process,” IEEE Trans. Industr. Inform., vol. 19, no. 4, pp. 5945–5955, 2022.
|
[5] |
P. Zhou, R. Zhang, J. Xie, J. Liu, H. Wang, and T. Chai, “Datadriven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated pca-ica method,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 622–631, 2020.
|
[6] |
X. Ma, D. Wu, S. Gao, T. Hou, and Y. Wang, “Autocorrelation feature analysis for dynamic process monitoring of thermal power plants,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 5387–5399, 2022.
|
[7] |
X. Yuan, W. Xu, Y. Wang, C. Yang, and W. Gui, “A deep residual pls for data-driven quality prediction modeling in industrial process,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1777–1785, 2024. doi: 10.1109/JAS.2024.124578
|
[8] |
J. Ren, J. Wen, Z. Zhao, R. Yan, X. Chen, and A. K. Nandi, “Uncertainty-aware deep learning: A promising tool for trustworthy fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1317–1330, 2024. doi: 10.1109/JAS.2024.124290
|
[9] |
S. Lou, C. Yang, P. Wu, L. Kong, and Y. Xu, “Fault diagnosis of blast furnace iron-making process with a novel deep stationary kernel learning support vector machine approach,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–13, 2022.
|
[10] |
Z. Chen, X. Wang, W. Gui, J. Zhu, C. Yang, and Z. Jiang, “A novel sensing imaging equipment under extremely dim light for blast furnace burden surface: Starlight high-temperature industrial endoscope,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 893–906, 2024. doi: 10.1109/JAS.2023.123954
|
[11] |
F. Jin, J. Zhao, C. Sheng, and W. Wang, “Causality diagram-based scheduling approach for blast furnace gas system,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 587–594, 2017.
|
[12] |
J. Li, C. Hua, and Y. Yang, “Output space transfer-based mimo rvflns modeling for estimation of blast furnace molten iron quality with missing indexes,” IEEE Trans. Instrum. Meas., vol. 70, p. 2506610, 2021.
|
[13] |
P. Azadi, J. Winz, E. Leo, R. Klock, and S. Engell, “A hybrid dynamic model for the prediction of molten iron and slag quality indices of a large-scale blast furnace,” Comput. Chem. Eng., vol. 156, p. 107573, 2022. doi: 10.1016/j.compchemeng.2021.107573
|
[14] |
S. Gupta, D. French, R. Sakurovs, M. Grigore, H. Sun, T. Cham, T. Hilding, M. Hallin, B. Lindblom, and V. Sahajwalla, “Minerals and iron-making reactions in blast furnaces,” Prog. Energy Combust. Sci., vol. 34, no. 2, pp. 155–197, 2008. doi: 10.1016/j.pecs.2007.04.001
|
[15] |
Y. Mei, S. Cheng, Q. Niu, W. Xu, and J. Ge, “A review on transfer mechanism and influence factors of silicon in blast furnace,” Ironmak. Steelmak., vol. 47, no. 3, pp. 246–262, 2020. doi: 10.1080/03019233.2019.1690836
|
[16] |
P. Zhou, R. Zhang, M. Liang, J. Fu, H. Wang, and T. Chai, “Fault identification for quality monitoring of molten iron in blast furnace ironmaking based on kpls with improved contribution rate,” Control. Eng. Pract., vol. 97, p. 104354, 2020. doi: 10.1016/j.conengprac.2020.104354
|
[17] |
P. Zhou, D. Guo, and T. Chai, “Data-driven predictive control of molten iron quality in blast furnace ironmaking using multi-output ls-svr based inverse system identification,” Neurocomputing, vol. 308, pp. 101–110, 2018. doi: 10.1016/j.neucom.2018.04.060
|
[18] |
K. Jiang, Z. Jiang, Y. Xie, D. Pan, and W. Gui, “Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network,” IEEE Trans. Instrum. Meas., vol. 71, p. 2512114, 2022.
|
[19] |
L. Kong, C. Yang, S. Lou, Y. Cai, X. Huang, and M. Sun, “Collaborative extraction of inter-variable coupling relationships and dynamics for prediction of silicon content in blast furnaces,” IEEE Trans. Instrum. Meas., vol. 72, p. 2515213, 2023.
|
[20] |
P. Zhou, Y. Lv, H. Wang, and T. Chai, “Data-driven robust rvflns modeling of a blast furnace iron-making process using cauchy distribution weighted m-estimation,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7141–7151, 2017. doi: 10.1109/TIE.2017.2686369
|
[21] |
P. Zhou, W. Li, H. Wang, M. Li, and T. Chai, “Robust online sequential rvflns for data modeling of dynamic time-varying systems with application of an ironmaking blast furnace,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4783–4795, 2019.
|
[22] |
J. Rong, P. Zhou, Z. Zhang, R. Zhang, and T. Chai, “Quality-related process monitoring of ironmaking blast furnace based on improved kernel orthogonal projection to latent structures,” Control. Eng. Pract., vol. 117, p. 104955, 2021. doi: 10.1016/j.conengprac.2021.104955
|
[23] |
J. Zeng and C. Gao, “Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation,” J. Process Control, vol. 19, no. 9, pp. 1519–1528, 2009. doi: 10.1016/j.jprocont.2009.07.006
|
[24] |
D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, and C. Yang, “Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model,” Sensors, vol. 18, no. 11, p. 3792, 2018. doi: 10.3390/s18113792
|
[25] |
C. C. C. Panjkovic, V., “Heat balance control of an ironmaking blast furnace, ” IFAC Proceedings, vol. 26, no. 2, pp. 593–598, 1993, 12th Triennal Wold Congress of the International Federation of Automatic control. Sydney, Australia, 18-23 July.
|
[26] |
I. Muchi, “Mathematical model of blast furnace,” ISIJ int., vol. 7, no. 5, pp. 223–237, 1967. doi: 10.2355/isijinternational1966.7.223
|
[27] |
H. Nogami, Y. Kashiwaya, and D. Yamada, “Simulation of blast furnace operation with intensive hydrogen injection,” ISIJ int., vol. 52, no. 8, pp. 1523–1527, 2012. doi: 10.2355/isijinternational.52.1523
|
[28] |
S. Kuang, Z. Li, and A. Yu, “Review on modeling and simulation of blast furnace,” Steel Res. Int., vol. 89, no. 1, p. 1700071, 2018. doi: 10.1002/srin.201700071
|
[29] |
Z. Li, S. Kuang, S. Liu, J. Gan, A. Yu, Y. Li, and X. Mao, “Numerical investigation of burden distribution in ironmaking blast furnace,” Powder Technol., vol. 353, pp. 385–397, 2019. doi: 10.1016/j.powtec.2019.05.047
|
[30] |
J. Chen, H. Zhang, G. Zhao, and A. S. Qureshi, “A novel method for estimating carbon emission based on industrial metabolism: Blast furnace iron-making with micro mechanism model,” Energy Rep., vol. 8, pp. 10 125–10 133, 2022. doi: 10.1016/j.egyr.2022.08.016
|
[31] |
X. He, Y. Zhou, Z. Chen, J. Zhang, and W.-N. Chen, “Large-scale evolution strategy based on search direction adaptation,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1651–1665, 2019.
|
[32] |
Y. Li, S. Zhang, J. Zhang, Y. Yin, W. Xiao, and Z. Zhang, “Datadriven multiobjective optimization for burden surface in blast furnace with feedback compensation,” IEEE Trans. Industr. Inform., vol. 16, no. 4, pp. 2233–2244, 2019.
|
[33] |
Z. Yu, Z. Zhong, K. Yang, W. Cao, and C. L. P. Chen, “Broad learning autoencoder with graph structure for data clustering,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 1, pp. 49–61, 2024. doi: 10.1109/TKDE.2023.3283425
|
[34] |
J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, “On mean absolute error for deep neural network based vector-to-vector regression,” IEEE Signal Process. Lett., vol. 27, pp. 1485–1489, 2020. doi: 10.1109/LSP.2020.3016837
|
[35] |
Y. Huang, S. Du, J. Hu, W. Pedrycz, and M. Wu, “Condition recognition strategy based on fuzzy clustering with information granulation for blast furnace,” IEEE Trans. Industr. Inform., vol. 20, no. 4, pp. 5864–5873, 2024. doi: 10.1109/TII.2023.3341253
|
[36] |
X. Gong, T. Zhang, C. P. Chen, and Z. Liu, “Research review for broad learning system: Algorithms, theory, and applications,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 8922–8950, 2021.
|
[37] |
W. Cao, J. Yan, X. Yang, X. Luo, and X. Guan, “Model-free formation control of autonomous underwater vehicles: A broad learning-based solution,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1325–1328, 2023. doi: 10.1109/JAS.2023.123165
|
[38] |
W. Dong, M. Wózniak, J. Wu, W. Li, and Z. Bai, “Denoising aggregation of graph neural networks by using principal component analysis,” IEEE Trans. Industr. Inform., vol. 19, no. 3, pp. 2385–2394, 2022.
|
[39] |
H. Kamrani, A. Z. Asli, P. P. Markopoulos, M. Langberg, D. A. Pados, and G. N. Karystinos, “Reduced-rank l1-norm principal-component analysis with performance guarantees,” IEEE Trans. Signal Process., vol. 69, pp. 240–255, 2020.
|
[40] |
G. Wang, J. Yang, and J. Jiao, “Voltage correlation-based principal component analysis method for short circuit fault diagnosis of series battery pack,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9025–9034, 2022.
|
[41] |
S. Lou, C. Yang, X. Zhu, H. Zhang, and P. Wu, “Adaptive dynamic inferential analytic stationary subspace analysis: A novel method for fault detection in blast furnace ironmaking process,” Inf. Sci., vol. 642, p. 119176, 2023. doi: 10.1016/j.ins.2023.119176
|
[42] |
D. Deriso and S. Boyd, “A general optimization framework for dynamic time warping,” Optim. Eng., vol. 24, no. 2, pp. 1411–1432, 2023. doi: 10.1007/s11081-022-09738-z
|
[43] |
A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970. doi: 10.1080/00401706.1970.10488634
|
[44] |
D. Wu and J. Xu, “On the optimal weighted l2 regularization in overparameterized linear regression,” Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 10 112–10 123, 2020.
|
[45] |
Q. Zhu, Q. Liu, and S. J. Qin, “Concurrent quality and process monitoring with canonical correlation analysis,” J. Process Control, vol. 60, pp. 95–103, 2017. doi: 10.1016/j.jprocont.2017.06.017
|
[46] |
Q. Jiang, S. X. Ding, Y. Wang, and X. Yan, “Data-driven distributed local fault detection for large-scale processes based on the ga-regularized canonical correlation analysis,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8148–8157, 2017. doi: 10.1109/TIE.2017.2698422
|
[47] |
P. Wu, S. Lou, X. Zhang, J. He, Y. Liu, and J. Gao, “Data-driven fault diagnosis using deep canonical variate analysis and fisher discriminant analysis,” IEEE Trans. Industr. Inform., vol. 17, no. 5, pp. 3324–3334, 2020.
|
[48] |
S. Lou, C. Yang, P. Wu, Y. Yang, L. Kong, and X. Zhang, “Datadriven joint fault diagnosis based on rmk-assa and dbsknet for blast furnace iron-making process,” IEEE Trans. Autom. Sci. Eng., p. , 2024.
|
[49] |
C. Peng, R. Lu, O. Kang, and W. Kai, “Batch process fault detection for multi-stage broad learning system,” Neural Netw., vol. 129, pp. 298–312, 2020. doi: 10.1016/j.neunet.2020.05.031
|
[50] |
S. Lou, C. Yang, X. Zhang, H. Zhang, and P. Wu, “Blast furnace ironmaking process monitoring with time-constrained global and local nonlinear analytic stationary subspace analysis,” IEEE Trans. Industr. Inform., pp. 1–14, 2023.
|
[51] |
J. Zhang, D. Zhou, and M. Chen, “Adaptive cointegration analysis and modified rpca with continual learning ability for monitoring multimode nonstationary processes,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 4841–4854, 2023. doi: 10.1109/TCYB.2021.3140065
|
[52] |
K. E. S. Pilario, Y. Cao, and M. Shafiee, “A kernel design approach to improve kernel subspace identification,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 6171–6180, 2020.
|