Citation: | H.-L. Wang, D.-Z. Yu, L.-Y. Lu, and Z.-H. Peng, “Adaptive data-driven coordinated control of UUVs for maritime search and rescue,” IEEE/CAA J. Autom. Sinica, 2025. doi: 10.1109/JAS.2024.124767 |
[1] |
Y. D. Wang, W. Z. Liu, J. Liu, and C. Y. Sun, “Cooperative USV-UAV marine search and rescue with visual navigation and reinforcement learning-based control,” ISA Transactions, vol. 137, pp. 222–235, 2023. doi: 10.1016/j.isatra.2023.01.007
|
[2] |
Z. Yan and J. Wang, “Model predictive control for tracking of underactuated vessels based on recurrent neural networks,” IEEE J. Ocean Engineering, vol. 37, no. 4, pp. 717–726, 2012. doi: 10.1109/JOE.2012.2201797
|
[3] |
Z. Wang, Y. Yang, S. Zhou, and H. P. Li, “S-plane controller parameter tuning based on IAFSA for UUV,” Communi. in Computer and Inform. Science, vol. 1801, pp. 69–80, 2023.
|
[4] |
Z. P. Yan, H. M. Yu, W. Zhang, B. Y. Li, and J. J. Zhou, “Globally finite-time stable tracking control of underactuated UUVs,” Ocean Engineering, vol. 107, pp. 132–146, 2015. doi: 10.1016/j.oceaneng.2015.07.039
|
[5] |
X. Xiang, C. Liu, L. Lapierre, and B. Jouvencel, “Synchronized path following control of multiple homogenous underactuated AUVs,” J. Systems Science and Complexity, vol. 25, pp. 71–89, 2012. doi: 10.1007/s11424-012-0109-2
|
[6] |
Y. Chen and P. Wei, “Coordinated adaptive control for coordinated path-following surface vessels with a time-invariant orbital velocity,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp. 337–346, 2014. doi: 10.1109/JAS.2014.7004662
|
[7] |
L. Liu, D. Wang, Z. Peng, T. Li, and C. L. P. Chen, “Cooperative path following ring-networked under-actuated autonomous surface vehicles: Algorithms and experimental results,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1519–1529, 2020. doi: 10.1109/TCYB.2018.2883335
|
[8] |
Z. H. Pang, X. Y. Zhao, J. Sun, Y. Shi, and G. P. Liu, “Comparison of three data-driven networked predictive control methods for a class of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1714–1716, 2022. doi: 10.1109/JAS.2022.105830
|
[9] |
Z. H. Pang, B. Ma, G. P. Liu, and Q.-L. Han, “Data-driven adaptive control: an incremental triangular dynamic linearization approach,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 4949–4953, 2022.
|
[10] |
K. Y. Pettersen and O. Egeland, “Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle,” IEEE Trans. Autom. Control, vol. 44, no. 01, pp. 112–115, 1999. doi: 10.1109/9.739086
|
[11] |
T. I. Fossen, “handbook of marine craft hydrodynamics and motion control,” New York: John Wiley and Sons Ltd, pp. 1–31, 2011.
|
[12] |
G. V. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Concurrent learning adaptive control of linear systems with exponentially convergent bounds,” Int. J. Adaptive Control and Signal Processing, vol. 27, no. 4, pp. 280–301, 2013. doi: 10.1002/acs.2297
|
[13] |
S. Seshagiri and H. K. Khalil, “Output feedback control of nonlinear systems using RBF neural networks,” IEEE Trans. Neural Networks, vol. 11, no. 1, pp. 69–79, 2000. doi: 10.1109/72.822511
|
[14] |
F. Ceragioli, C. D. Persis, and P. Frasca, “Discontinuities and hysteresis in quantized average consensus,” Automatica, vol. 47, no. 9, pp. 1916–1928, 2011. doi: 10.1016/j.automatica.2011.06.020
|