A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 7
Jul.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Xin and Z.-Q. Long, “A learning-based passive resilient controller for cyber-physical systems: Countering stealthy deception attacks and complete loss of actuators control authority,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1368–1380, Jul. 2025. doi: 10.1109/JAS.2024.124683
Citation: L. Xin and Z.-Q. Long, “A learning-based passive resilient controller for cyber-physical systems: Countering stealthy deception attacks and complete loss of actuators control authority,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1368–1380, Jul. 2025. doi: 10.1109/JAS.2024.124683

A Learning-Based Passive Resilient Controller for Cyber-Physical Systems: Countering Stealthy Deception Attacks and Complete Loss of Actuators Control Authority

doi: 10.1109/JAS.2024.124683
Funds:  This work was supported by the National Natural Science Foundation of China (52332011)
More Information
  • Cyber-physical systems (CPSs) are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world, which is augmented by Internet connectivity. This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs. However, current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks (SDAs) due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks. Moreover, some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority. To address these issues, we introduce a novel learning-based passive resilient controller (LPRC). Our approach, unlike observer-based state reconstruction, shows enhanced effectiveness in countering SDAs. We developed a safety state set, represented by an ellipsoid, to ensure CPS stability under SDA conditions, maintaining system trajectories within this set. Additionally, by employing deep reinforcement learning (DRL), the LPRC acquires the capacity to adapt and diverse evolving attack strategies. To empirically substantiate our methodology, various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.

     

  • loading
  • [1]
    H. Guo, J. Sun, and Z.-H. Pang, “Residual-based false data injection attacks against multi-sensor estimation systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1181–1191, May 2023. doi: 10.1109/JAS.2023.123441
    [2]
    G. Franzè, F. Tedesco, and D. Famularo, “Resilience against replay attacks: A distributed model predictive control scheme for networked multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 628–640, Mar. 2021. doi: 10.1109/JAS.2020.1003542
    [3]
    X. Ge, Q.-L. Han, Q. Wu, and X.-M. Zhang, “Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1234–1251, May 2023. doi: 10.1109/JAS.2022.105845
    [4]
    S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty, “A systems and control perspective of cps security,” Annu. Rev. Control, vol. 47, pp. 394–411, Jan. 2019. doi: 10.1016/j.arcontrol.2019.04.011
    [5]
    D. Zhang, Q.-G. Wang, G. Feng, Y. Shi, and A. V. Vasilakos, “A survey on attack detection, estimation and control of industrial cyber-physical systems,” ISA Trans., vol. 116, pp. 1–16, Oct. 2021. doi: 10.1016/j.isatra.2021.01.036
    [6]
    J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep learning based attack detection for cyber-physical system cybersecurity: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 377–391, Mar. 2022. doi: 10.1109/JAS.2021.1004261
    [7]
    J. Zhou, J. Shang, and T. Chen, “Cybersecurity landscape on remote state estimation: A comprehensive review,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 851–865, Apr. 2024. doi: 10.1109/JAS.2024.124257
    [8]
    M. Liu, F. Teng, Z. Zhang, P. Ge, M. Sun, R. Deng, P. Cheng, and J. Chen, “Enhancing cyber-resiliency of der-based smart grid: A survey,” IEEE Trans. Smart Grid, vol. 15, no. 5, pp. 4998–5030, Sept. 2024. doi: 10.1109/TSG.2024.3373008
    [9]
    X.-Y. Kong and G.-H. Yang, “Anti-watermarking stealthy deception attacks against networked unmanned surface vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 9, pp. 12835–12840, Sept. 2024. doi: 10.1109/TITS.2024.3374971
    [10]
    X.-Y. Kong and G.-H. Yang, “An intrusion detection method based on self-generated coding technology for stealthy false data injection attacks in train-ground communication systems,” IEEE Trans. Ind. Electron., vol. 70, no. 8, pp. 8468–8476, Aug. 2023. doi: 10.1109/TIE.2022.3213899
    [11]
    P. Griffioen, S. Weerakkody, and B. Sinopoli, “A moving target defense for securing cyber-physical systems,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2016–2031, May 2021. doi: 10.1109/TAC.2020.3005686
    [12]
    P. Griffioen, S. Weerakkody, and B. Sinopoli, “An optimal design of a moving target defense for attack detection in control systems,” in Proc. American Control Conf., Philadelphia, USA, 2019, pp. 4527–4534.
    [13]
    M. Ghaderi, K. Gheitasi, and W. Lucia, “A blended active detection strategy for false data injection attacks in cyber-physical systems,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 168–176, Mar. 2021. doi: 10.1109/TCNS.2020.3024315
    [14]
    S. X. Ding, L. Li, D. Zhao, C. Louen, and T. Liu, “Application of the unified control and detection framework to detecting stealthy integrity cyber-attacks on feedback control systems,” Automatica, vol. 142, p. 110352, Aug. 2022. doi: 10.1016/j.automatica.2022.110352
    [15]
    C.-Z. Bai, V. Gupta, and F. Pasqualetti, “On Kalman filtering with compromised sensors: Attack stealthiness and performance bounds,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6641–6648, Dec. 2017. doi: 10.1109/TAC.2017.2714903
    [16]
    H. Liu, Y. Ni, L. Xie, and K. H. Johansson, “How vulnerable is innovation-based remote state estimation: Fundamental limits under linear attacks,” Automatica, vol. 136, p. 110079, Feb. 2022. doi: 10.1016/j.automatica.2021.110079
    [17]
    Q. Zhang, K. Liu, Y. Xia, and A. Ma, “Optimal stealthy deception attack against cyber-physical systems,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3963–3972, Sept. 2019.
    [18]
    Y.-G. Li and G.-H. Yang, “Optimal stealthy innovation-based attacks with historical data in cyber-physical systems,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 6, pp. 3401–3411, Jun. 2021. doi: 10.1109/TSMC.2019.2924976
    [19]
    A.-Y. Lu and G.-H. Yang, “Malicious adversaries against secure state estimation: Sparse sensor attack design,” Automatica, vol. 136, p. 110037, Feb. 2022. doi: 10.1016/j.automatica.2021.110037
    [20]
    D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
    [21]
    M. R. Habibi, H. R. Baghaee, T. Dragičević, and F. Blaabjerg, “False data injection cyber-attacks mitigation in parallel DC/DC converters based on artificial neural networks,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 2, pp. 717–721, Feb. 2021.
    [22]
    H. Zhang, J. Hu, G.-P. Liu, and X. Yu, “Event-triggered secure control of discrete systems under cyber-attacks using an observer-based sliding mode strategy,” Inf. Sci., vol. 587, pp. 587–606, Mar. 2022. doi: 10.1016/j.ins.2021.12.048
    [23]
    Y. Zhao, C. Zhou, Y.-C. Tian, and Y. Qin, “Composite finite-time resilient control for cyber-physical systems subject to actuator attacks,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 1063–1077, Feb. 2023. doi: 10.1109/TCYB.2021.3107302
    [24]
    X.-K. Liu, C. Wen, Q. Xu, and Y.-W. Wang, “Resilient control and analysis for dc microgrid system under dos and impulsive FDI attacks,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3742–3754, Sept. 2021. doi: 10.1109/TSG.2021.3072218
    [25]
    Y. Zhou, K. G. Vamvoudakis, W. M. Haddad, and Z.-P. Jiang, “A secure control learning framework for cyber-physical systems under sensor and actuator attacks,” IEEE Trans. Cybern., vol. 51, no. 9, pp. 4648–4660, Sept. 2021. doi: 10.1109/TCYB.2020.3006871
    [26]
    J.-B. Bouvier and M. Ornik, “Designing resilient linear systems,” IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4832–4837, Sept. 2022. doi: 10.1109/TAC.2022.3163242
    [27]
    W. Duo, M. C. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, May 2022. doi: 10.1109/JAS.2022.105548
    [28]
    Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1009–1019, Apr. 2023. doi: 10.1109/JAS.2023.123132
    [29]
    C. Du, F. Li, Y. Shi, C. Yang, and W. Gui, “Integral event-triggered attack-resilient control of aircraft-on-ground synergistic turning system with uncertain tire cornering stiffness,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1276–1287, May 2023. doi: 10.1109/JAS.2023.123480
    [30]
    R. M. G. Ferrari and A. M. H. Teixeira, Safety, Security and Privacy for Cyber-Physical Systems. Cham, Germany: Springer, 2021.
    [31]
    J.-B. Bouvier and M. Ornik, “Resilience of linear systems to partial loss of control authority,” Automatica, vol. 152, p. 110985, Jun. 2023. doi: 10.1016/j.automatica.2023.110985
    [32]
    R. S. Smith, “Covert misappropriation of networked control systems: Presenting a feedback structure,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 82–92, Feb. 2015. doi: 10.1109/MCS.2014.2364723
    [33]
    Y. Chen, S. Kar, and J. M. F. Moura, “Dynamic attack detection in cyber-physical systems with side initial state information,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4618–4624, Sept. 2017. doi: 10.1109/TAC.2016.2626267
    [34]
    F. Li and Y. Tang, “False data injection attack for cyber-physical systems with resource constraint,” IEEE Trans. Cybern., vol. 50, no. 2, pp. 729–738, Feb. 2020. doi: 10.1109/TCYB.2018.2871951
    [35]
    S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic safety verification using barrier certificates,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1415–1428, Aug. 2007. doi: 10.1109/TAC.2007.902736
    [36]
    X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, Dec. 2015. doi: 10.1016/j.ifacol.2015.11.152
    [37]
    B. Chen, J. Cao, G. Lu, and L. Rutkowski, “Lyapunov functions for the set stability and the synchronization of Boolean control networks,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 11, pp. 2537–2541, Nov. 2020.
    [38]
    Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse lyapunov theorem for robust stability,” SIAM J. Control Optim., vol. 34, no. 1, pp. 124–160, Jan. 1996. doi: 10.1137/S0363012993259981
    [39]
    V. R. Konda and J. N. Tsitsiklis, “Actor-citic agorithms,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Denver, USA, 1999, pp. 1008–1014.
    [40]
    J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” arXiv preprint arXiv: 1506.02438, 2018.
    [41]
    H. F. Song, A. Abdolmaleki, J. T. Springenberg, A. Clark, H. Soyer, J. W. Rae, S. Noury, A. Ahuja, S. Liu, D. Tirumala, N. Heess, D. Belov, M. Riedmiller, and M. M. Botvinick, “V-MPO: On-policy maximum a posteriori policy optimization for discrete and continuous control,” arXiv preprint arXiv: 1909.12238, 2019.
    [42]
    S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and review,” arXiv preprint arXiv: 1805.00909, 2018.
    [43]
    R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,” in Learning in Graphical Models, M. I. Jordan, Ed. Dordrecht, the Netherlands: Springer, 1998, pp. 355–368.
    [44]
    M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee, “Design and implementation of attack-resilient cyberphysical systems: With a focus on attack-resilient state estimators,” IEEE Control Syst. Mag., vol. 37, no. 2, pp. 66–81, Apr. 2017. doi: 10.1109/MCS.2016.2643239
    [45]
    I. Doroftei, V. Grosu, and V. Spinu, “Omnidirectional mobile robot-design and implementation,” in Bioinspiration and Robotics Walking and Climbing Robots, M. K. Habib, Ed. London, UK: IntechOpen, 2007.
    [46]
    R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Trans. Robot. Autom., vol. 18, no. 3, pp. 285–293, Jun. 2002. doi: 10.1109/TRA.2002.1019459
    [47]
    G. Franzè, D. Famularo, W. Lucia, and F. Tedesco, “Cyber-physical systems subject to false data injections: A model predictive control framework for resilience operations,” Automatica, vol. 152, p. 110957, Jun. 2023. doi: 10.1016/j.automatica.2023.110957
    [48]
    J. Nocedal and S. J. Wright, Numerical Optimization. 2nd ed. Berlin, Germany: Springer, 1999.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (298) PDF downloads(53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return