Citation: | M. Chen, L. Tao, J. Lou, and X. Luo, “Latent-factorization-of-tensors-incorporated battery cycle life prediction,” IEEE/CAA J. Autom. Sinica, 2024. doi: 10.1109/JAS.2024.124602 |
[1] |
Y. Wang, K. Li, and Z. Chen, “Battery full life cycle management and health prognosis based on cloud service and broad learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1540–1542, Aug. 2022. doi: 10.1109/JAS.2022.105779
|
[2] |
X. Li, Y. Xu, N. Li, B. Yang, and Y. Lei, “Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 121–134, Jan. 2023. doi: 10.1109/JAS.2022.105935
|
[3] |
S. Bamati and H. Chaoui, “Developing an online data-driven state of health estimation of lithium-ion batteries under random sensor measurement unavailability,” IEEE Trans. Transportation Electrifi cation, vol. 9, no. 1, pp. 1128–1141, Mar. 2023. doi: 10.1109/TTE.2022.3199115
|
[4] |
R. Razavi-Far, S. Chakrabarti, M. Saif, and E. Zio, “An integrated imputation-prediction scheme for prognostics of battery data with missing observations,” Expert Systems With Applications, vol. 115, pp. 709–723, Jun. 2019.
|
[5] |
N. Joshi, J. Channegowda, and C. Lingaraj, “Scalable imputation technique for effective computation of missing battery parameters,” Int. J. Energy Research, vol. 46, no. 15, pp. 22439–22453, Dec. 2022. doi: 10.1002/er.8548
|
[6] |
C. Liow, H. Kang, S. Kim, M. Lee, A. Baucour, K. Bang, Y. Shim, J. Choe, G. Hwang, S. Cho, G. Park, J. Yeom, J. Agar, J. Yuk, J. Shin, H. Lee, H. Byon, E. Cho, and S. Hong, “Machine learning assisted synthesis of lithium-ion batteries cathode materials,” Nano Energy, vol. 98, p. 107214, Jul. 2022.
|
[7] |
J. Ma, J. Cheng, F. Jiang, W. Chen, M. Wang, and C. Zhai, “A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data,” Energy & Buildings, no. 216, p. 109941, Mar. 2020.
|
[8] |
K. Liu, Z. Wei, C. Zhang, Y. Shang, R, Teodorescu, and Q. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom.Sinica, vol. 9, no. 7, pp. 1139–1165, Jul. 2022. doi: 10.1109/JAS.2022.105599
|
[9] |
H. Wu, X. Luo, M. Zhou, M. Rawa, K. Sedraoui, and A. Albeshri, “A PID-incorporated latent factorization of tensors approach to dynamically weighted directed network analysis,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 533–546, Mar. 2022. doi: 10.1109/JAS.2021.1004308
|
[10] |
M. Chen, C. He, and X. Luo, “MNL: A highly-efficient model for large-scale dynamic weighted directed network representation,” IEEE Trans. Big Data, vol. 9, no. 3, pp. 889–903, Jun. 2023.
|
[11] |
D. Wu and X. Luo, “Robust latent factor analysis for precise representation of high-dimensional and sparse data,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021. doi: 10.1109/JAS.2020.1003533
|
[12] |
X. Luo, Z. Wang, and M. Shang, “An instance-frequency-weighted regularization scheme for non-negative latent factor analysis on high dimensional and sparse data,” IEEE Trans. Syst. Man Cybern., vol. 51, no. 6, pp. 3522–3532, 2021.
|
[13] |
K. A. Severson, P. M. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang, and R. D. Braatz, “Data-driven prediction of battery cycle life before capacity degradation,” Nature Energy, vol. 4, no. 5, pp. 383–391, 2019. doi: 10.1038/s41560-019-0356-8
|
[14] |
Y. Luo and K. Lu, “An online state of health estimation technique for lithium-ion battery using artificial neural network and linear interpolation,” J. Energy Storage, vol. 52, p. 105062, 2022.
|
[15] |
H. Zhang, Y. Su, F. Altafm, T. Wik, and S. Gros, “Interpretable battery cycle life range prediction using early cell degradation data, ” IEEE Trans. Transportation Electrification, vol. 9, no. 2, Jun. 2023.
|
[16] |
S. Saxena, L. Ward, J. Kubal, W. Lu, S. Babinec, and N. Paulson, “A convolutional neural network model for battery capacity fade curve prediction using early life data,” J. Power Sources, vol. 542, p. 231736, Aug. 2022. doi: 10.1016/j.jpowsour.2022.231736
|