Citation: | L. Fan, X. Chen, S. Li, and Y. Chai, “Multi-interval-aggregation failure point approximation for remaining useful life prediction,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 0, pp. 1–3, Jun. 2024. doi: 10.1109/JAS.2024.124593 |
[1] |
Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic review from data acquisition to rul prediction,” Mechanical systems and signal processing, vol. 104, pp. 799–834, 2018. doi: 10.1016/j.ymssp.2017.11.016
|
[2] |
T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, and G. P. Li, “Predictive maintenance in the Industry 4.0: A systematic literature review,” Computers & Industrial Engineering, vol. 150, p. 106889, 2020.
|
[3] |
Q. Zhu, Q. Xiong, Z. Yang, and Y. Yu, “RGCNU: Recurrent graph convolutional network with uncertainty estimation for remaining useful life prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1640–1642, 2023. doi: 10.1109/JAS.2023.123369
|
[4] |
Y. Pan, T. Wu, Y. Jing, Z. Han, and Y. Lei, “Remaining useful life prediction of lubrication oil by integrating multi-source knowledge and multi-indicator data,” Mechanical Systems and Signal Processing, vol. 191, p. 110174, 2023. doi: 10.1016/j.ymssp.2023.110174
|
[5] |
B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based on a double-convolutional neural network architecture,” IEEE Trans. Industrial Electronics, vol. 66, no. 12, pp. 9521–9530, 2019. doi: 10.1109/TIE.2019.2924605
|
[6] |
H. Miao, B. Li, C. Sun, and J. Liu, “Joint learning of degradation assessment and rul prediction for aeroengines via dual-task deep LSTM networks,” IEEE Trans. Industrial Informatics, vol. 15, no. 9, pp. 5023–5032, 2019. doi: 10.1109/TII.2019.2900295
|
[7] |
S. Xiang, Y. Qin, J. Luo, and H. Pu, “Spatiotemporally multidifferential processing deep neural network and its application to equipment remaining useful life prediction,” IEEE Trans. Industrial Informatics, vol. 18, no. 10, pp. 7230–7239, 2021.
|
[8] |
L. Fan, Y. Chai, and X. Chen, “Trend attention fully convolutional network for remaining useful life estimation,” Reliability Engineering & System Safety, vol. 225, p. 108590, 2022.
|
[9] |
A. Graves and A. Graves, “Long short-term memory,” Supervised Sequence Labelling With Recurrent Neural Networks, pp. 37–45, 2012.
|
[10] |
Y. Qin, S. Xiang, Y. Chai, and H. Chen, “Macroscopic–microscopic attention in LSTM networks based on fusion features for gear remaining life prediction,” IEEE Trans. Industrial Electronics, vol. 67, no. 12, pp. 10865–10875, 2019.
|
[11] |
Y. Qin, D. Chen, S. Xiang, and C. Zhu, “Gated dual attention unit neural networks for remaining useful life prediction of rolling bearings,” IEEE Trans. Industrial Informatics, vol. 17, no. 9, pp. 6438–6447, 2020.
|
[12] |
J. Zhou, Y. Qin, J. Luo, S. Wang, and T. Zhu, “Dual-thread gated recurrent unit for gear remaining useful life prediction,” IEEE Trans. Industrial Informatics, p. , 2022.
|
[13] |
K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3D neural networks,” Nature, pp. 1–6, 2023.
|
[14] |
M. Pecht, “Calce battery group,” 2017. [Online]. Available: http://www.calce.umd.edu/batteries/data.htm
|
[15] |
Prognostics and H. M. Society, “PHM Data Challenge 2010,” 2010. [Online]. Available: https://phmsociety.org/conference/
|