A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. Wang, W. Chen, and L. Qiu, “The first five years of a phase theory for complex systems and networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1–16, Aug. 2024. doi: 10.1109/JAS.2024.124542
Citation: D. Wang, W. Chen, and L. Qiu, “The first five years of a phase theory for complex systems and networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1–16, Aug. 2024. doi: 10.1109/JAS.2024.124542

The First Five Years of a Phase Theory for Complex Systems and Networks

doi: 10.1109/JAS.2024.124542
Funds:  This work was supported in part by National Natural Science Foundation of China (62073003, 72131001), Hong Hong Research Grants Council under GRF grants (16200619, 16201120, 16205421, 16203922), Shenzhen-Hong Kong-Macau Science and Technology Innovation Fund (SGDX20201103094600006), and Googol Technology (Shenzhen) Ltd
More Information
  • In this paper, we review the development of a phase theory for systems and networks in its first five years, represented by a trilogy: Matrix phases and their properties; The MIMO LTI system phase response, its physical interpretations, the small phase theorem, and the sectored real lemma; The synchronization of a multi-agent network using phase alignment. Towards the end, we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.

     

  • loading
  • [1]
    L. Qiu and K. Zhou, Introduction to Feedback Control. Englewood Cliffs, USA: Prentice Hall, 2009.
    [2]
    I. Postlethwaite and A. G. J. MacFarlane, A Complex Variable Approach to the Analysis of Linear Multivariable Feedback Systems. Berlin, Germany: Springer, 1979.
    [3]
    I. Postlethwaite, J. Edmunds, and A. MacFarlane, “Principal gains and principal phases in the analysis of linear multivariable feedback systems,” IEEE Trans. Autom. Control, vol. 26, no. 1, pp. 32–46, Feb. 1981. doi: 10.1109/TAC.1981.1102556
    [4]
    D. S. Bernstein and W. M. Haddad, “Is there more to robust control theory than small gain,” in Proc. American Control Conf., Chicago, USA, 1992, pp. 83–84.
    [5]
    J. Chen, “Multivariable gain-phase and sensitivity integral relations and design trade-offs,” IEEE Trans. Autom. Control, vol. 43, no. 3, pp. 373–385, Mar. 1998. doi: 10.1109/9.661594
    [6]
    J. S. Freudenberg and D. P. Looze, Frequency Domain Properties of Scalar and Multivariable Feedback Systems. Berlin, Germany: Springer, 1988.
    [7]
    B. D. O. Anderson and M. Green, “Hilbert transform and gain/phase error bounds for rational functions,” IEEE Trans. Circuits Syst., vol. 35, no. 5, pp. 528–535, May 1988. doi: 10.1109/31.1780
    [8]
    D. H. Owens, “The numerical range: A tool for robust stability studies,” Syst. Control Lett., vol. 5, no. 3, pp. 153–158, Dec. 1984. doi: 10.1016/S0167-6911(84)80096-1
    [9]
    A. L. Tits, V. Balakrishnan, and L. Lee, “Robustness under bounded uncertainty with phase information,” IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 50–65, Jan. 1999. doi: 10.1109/9.739067
    [10]
    K. Laib, A. Korniienko, M. Dinh, G. Scorletti, and F. Morel, “Hierarchical robust performance analysis of uncertain large scale systems,” IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 2075–2090, Jul. 2018. doi: 10.1109/TAC.2017.2762468
    [11]
    A. G. J. MacFarlane and I. Postlethwaite, “The generalized Nyquist stability criterion and multivariable root loci,” Int. J. Control, vol. 25, no. 1, pp. 81–127, 1977. doi: 10.1080/00207177708922217
    [12]
    U. Shaked, “The angles of departure and approach of the root-loci in linear multivariable systems,” Int. J. Control, vol. 23, no. 4, pp. 445–457, 1976. doi: 10.1080/00207177608922172
    [13]
    P. Thompson, G. Stein, and A. Laub, “Angles of multivariable root loci,” IEEE Trans. Autom. Control, vol. 27, no. 6, pp. 1241–1243, Dec. 1982. doi: 10.1109/TAC.1982.1103117
    [14]
    D. Wang, W. Chen, S. Z. Khong, and L. Qiu, “On the phases of a complex matrix,” Linear Algebra Appl., vol. 593, pp. 152–179, May 2020. doi: 10.1016/j.laa.2020.01.035
    [15]
    D. Wang, X. Mao, W. Chen, and L. Qiu, “On the phases of a semi-sectorial matrix and the essential phase of a Laplacian,” Linear Algebra Appl., vol. 676, pp. 441–458, Nov. 2023. doi: 10.1016/j.laa.2023.07.014
    [16]
    W. Chen, D. Wang, S. Z. Khong, and L. Qiu, “Phase analysis of MIMO LTI systems,” in Proc. 58th IEEE Conf. Decision and Control, Nice, France, 2019, pp. 6062–6067.
    [17]
    L. Qiu, W. Chen, and D. Wang, “New phase of phase,” J. Syst. Sci. Complexity, vol. 34, no. 5, pp. 1821–1839, Oct. 2021. doi: 10.1007/s11424-021-1249-z
    [18]
    X. Mao, W. Chen, and L. Qiu, “Phases of discrete-time LTI multivariable systems,” Automatica, vol. 142, p. 110311, Aug. 2022. doi: 10.1016/j.automatica.2022.110311
    [19]
    W. Chen, D. Wang, S. Z. Khong, and L. Qiu, “A phase theory of multi-input multi-output linear time-invariant systems,” SIAM J. Control Optim., vol. 62, no. 2, pp. 1235–1260, Apr. 2024. doi: 10.1137/22M148968X
    [20]
    D. Wang, W. Chen, and L. Qiu, “Synchronization of diverse agents via phase analysis,” Automatica, vol. 159, p. 111325, Jan. 2024. doi: 10.1016/j.automatica.2023.111325
    [21]
    A. Horn and R. Steinberg, “Eigenvalues of the unitary part of a matrix,” Pacific J. Math., vol. 9, no. 2, pp. 541–550, Jun. 1959. doi: 10.2140/pjm.1959.9.541
    [22]
    S. Furtado and C. R. Johnson, “Spectral variation under congruence,” Linear Multilinear Algebra, vol. 49, no. 3, pp. 243–259, 2001. doi: 10.1080/03081080108818698
    [23]
    S. Furtado and C. R. Johnson, “Spectral variation under congruence for a nonsingular matrix with 0 on the boundary of its field of values,” Linear Algebra Appl., vol. 359, no. 1-3, pp. 67–78, Jan. 2003. doi: 10.1016/S0024-3795(02)00429-9
    [24]
    C. S. Ballantine and C. R. Johnson, “Accretive matrix products,” Linear Multilinear Algebra, vol. 3, no. 3, pp. 169–185, 1975. doi: 10.1080/03081087508817108
    [25]
    R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge, UK: Cambridge University Press, 1991.
    [26]
    T. Kato, Perturbation Theory for Linear Operators. Berlin, Germany: Springer, 1980.
    [27]
    G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory. Amsterdam: Elsevier, 1990.
    [28]
    J. Liang, D. Zhao, and L. Qiu, “Feedback stability under mixed gain and phase uncertainty,” IEEE Trans. Autom. Control, 2023, submitted.
    [29]
    M. G. Safonov, “Stability margins of diagonally perturbed multivariable feedback systems,” IEE Proc. D Control Theory Appl., vol. 129, no. 6, pp. 251–256, Nov. 1982. doi: 10.1049/ip-d.1982.0054
    [30]
    F. L. Bauer, “Optimally scaled matrices,” Numer. Math., vol. 5, no. 1, pp. 73–87, Dec. 1963. doi: 10.1007/BF01385880
    [31]
    J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE Proc. D Control Theory Appl., vol. 129, no. 6, pp. 242–250, Nov. 1982. doi: 10.1049/ip-d.1982.0053
    [32]
    K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control. Englewood Cliffs, USA: Prentice Hall, 1996.
    [33]
    J. Stoer and C. Witzgall, “Transformations by diagonal matrices in a normed space,” Numer. Math., vol. 4, no. 1, pp. 158–171, Dec. 1962. doi: 10.1007/BF01386309
    [34]
    R. Merris, “Laplacian matrices of graphs: A survey,” Linear Algebra Appl., vol. 197-198, pp. 143–176, Jan.–Feb. 1994. doi: 10.1016/0024-3795(94)90486-3
    [35]
    C. Guo and S. Fan, “Winding number criterion for the origin to belong to the numerical range of a matrix on a loop of matrices,” arXiv preprint arXiv: 2311.00849, 2023.
    [36]
    B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control: Theory and Applications. 3rd ed. Cham, Switzerland: Springer, 2020.
    [37]
    K. Liu and Y. Yao, Robust Control: Theory and Applications. Hoboken, USA: John Wiley & Sons, 2016.
    [38]
    M. Vidyasagar, Input-Output Analysis of Large-Scale Interconnected Systems: Decomposition, Well-Posedness and Stability. Berlin, Germany: Springer, 1981.
    [39]
    A. Lanzon and I. R. Petersen, “Stability robustness of a feedback interconnection of systems with negative imaginary frequency response,” IEEE Trans. Autom. Control, vol. 53, no. 4, pp. 1042–1046, May 2008. doi: 10.1109/TAC.2008.919567
    [40]
    I. R. Petersen and A. Lanzon, “Feedback control of negative-imaginary systems,” IEEE Control Syst. Mag., vol. 30, no. 5, pp. 54–72, Oct. 2010. doi: 10.1109/MCS.2010.937676
    [41]
    M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and A. Lanzon, “Generalizing negative imaginary systems theory to include free body dynamics: Control of highly resonant structures with free body motion,” IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2692–2707, Oct. 2014. doi: 10.1109/TAC.2014.2325692
    [42]
    M. Vidyasagar, Control System Synthesis: A Factorization Approach. Cambridge, USA: MIT Press, 1985.
    [43]
    Y. Shi, X. Zhu, and X. Xu, “Small phase theorem for linear time invariant systems,” 2023, submitted.
    [44]
    C. Chen, D. Zhao, W. Chen, S. Z. Khong, and L. Qiu, “Phase of nonlinear systems,” arXiv preprint arXiv: 2012.00692, 2021.
    [45]
    X. Yang, D. Wang, and W. Chen, “On a small phase theorem with necessity over phase bounded nonlinear uncertainties,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1877–1882, 2023. doi: 10.1016/j.ifacol.2023.10.1905
    [46]
    L. Huang, D. Wang, X. Wang, H. Xin, P. Ju, K. H. Johansson, and F. Dörfler, “Gain and phase: Decentralized stability conditions for power electronics-dominated power systems,” IEEE Trans. Power Syst., 2024. doi: 10.1109/TPWRS.2024.3380528
    [47]
    R. Srazhidinov, D. Zhang, and L. Qiu, “Computation of the phase and gain margins of MIMO control systems,” Automatica, vol. 149, p. 110846, Mar. 2023. doi: 10.1016/j.automatica.2022.110846
    [48]
    R. Srazhidinov, J. Liang, and L. Qiu, “Gain-phase margin of MIMO control systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1728–1735, 2023. doi: 10.1016/j.ifacol.2023.10.1881
    [49]
    A. Ringh, X. Mao, W. Chen, L. Qiu, and S. Z. Khong, “Gain and phase type multipliers for structured feedback robustness,” IEEE Trans. Autom. Control, 2024, conditionally accepted.
    [50]
    T. Iwasaki and S. Hara, “Generalized KYP lemma: Unified frequency domain inequalities with design applications,” IEEE Trans. Autom. Control, vol. 50, no. 1, pp. 41–59, Jan. 2005. doi: 10.1109/TAC.2004.840475
    [51]
    N. Kottenstette, M. J. McCourt, M. Xia, V. Gupta, and P. J. Antsaklis, “On relationships among passivity, positive realness, and dissipativity in linear systems,” Automatica, vol. 50, no. 4, pp. 1003–1016, Apr. 2014. doi: 10.1016/j.automatica.2014.02.013
    [52]
    K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, “Mixed H2 and H performance objectives. I. Robust performance analysis,” IEEE Trans. Autom. Control, vol. 39, no. 8, pp. 1564–1574, Aug. 1994. doi: 10.1109/9.310030
    [53]
    Z. Nowomiejski, “Generalized theory of electric power,” Archiv für Elektrotechnik, vol. 63, no. 3, pp. 177–182, May 1981.
    [54]
    S. L. Hahn, Hilbert Transforms in Signal Processing. Boston, USA: Artech House Inc., 1996.
    [55]
    J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory. New York, USA: MacMillan, 1990.
    [56]
    W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control. London, UK: Springer, 2008.
    [57]
    Z. Lin, B. Francis, and M. Maggiore, Distributed Control and Analysis of Coupled Cell Systems. Saarbrücken, Germany: VDM Verlag, 2008.
    [58]
    F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms. Princeton, USA: Princeton University Press, 2009.
    [59]
    M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton, USA: Princeton University Press, 2010.
    [60]
    F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. London, UK: Springer, 2014.
    [61]
    F. Bullo, Lectures on Network Systems. Charleston, USA: CreateSpace Independent Publishing Platform, 2019.
    [62]
    A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003. doi: 10.1109/TAC.2003.812781
    [63]
    R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004. doi: 10.1109/TAC.2004.834113
    [64]
    W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 655–661, May 2005. doi: 10.1109/TAC.2005.846556
    [65]
    W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proc. American Control Conf., Portland, USA, 2005, pp. 1859–1864.
    [66]
    Z. Lin, B. Francis, and M. Maggiore, “Getting mobile autonomous robots to rendezvous,” in Proc. Workshop on Control of Uncertain Systems: Modelling, Approximation, and Design, Berlin, Germany, 2006, pp. 119–137.
    [67]
    R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. doi: 10.1109/JPROC.2006.887293
    [68]
    J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004. doi: 10.1109/TAC.2004.834433
    [69]
    C.-Q. Ma and J.-F. Zhang, “Necessary and sufficient conditions for consensusability of linear multi-agent systems,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1263–1268, May 2010. doi: 10.1109/TAC.2010.2042764
    [70]
    Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint,” IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 57, no. 1, pp. 213–224, Jan. 2010. doi: 10.1109/TCSI.2009.2023937
    [71]
    K. You and L. Xie, “Network topology and communication data rate for consensusability of discrete-time multi-agent systems,” IEEE Trans. Autom. Control, vol. 56, no. 10, pp. 2262–2275, Oct. 2011. doi: 10.1109/TAC.2011.2164017
    [72]
    G. Gu, L. Marinovici, and F. L. Lewis, “Consensusability of discrete-time dynamic multiagent systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2085–2089, Aug. 2012. doi: 10.1109/TAC.2011.2179431
    [73]
    I. Lestas and G. Vinnicombe, “Heterogeneity and scalability in group agreement protocols: Beyond small gain and passivity approaches,” Automatica, vol. 46, no. 7, pp. 1141–1151, Jul. 2010. doi: 10.1016/j.automatica.2010.03.018
    [74]
    P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal model principle is necessary and sufficient for linear output synchronization,” Automatica, vol. 47, no. 5, pp. 1068–1074, May 2011. doi: 10.1016/j.automatica.2011.01.081
    [75]
    M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network theory in passivity-based cooperative control,” Automatica, vol. 50, no. 8, pp. 2051–2061, Aug. 2014. doi: 10.1016/j.automatica.2014.06.002
    [76]
    S. Z. Khong, E. Lovisari, and A. Rantzer, “A unifying framework for robust synchronization of heterogeneous networks via integral quadratic constraints,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1297–1309, May 2016. doi: 10.1109/TAC.2016.2545118
    [77]
    M. Lu, L. Liu, and G. Feng, “Output synchronization of heterogeneous linear multi-agent systems,” in Proc. 11th Asian Control Conf., Gold Coast, Australia, 2017, pp. 156–161.
    [78]
    D. Wang, W. Chen, and L. Qiu, “Synchronization of heterogeneous dynamical networks via phase analysis,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3013–3018, 2020. doi: 10.1016/j.ifacol.2020.12.989
    [79]
    H. Jeffreys and B. Jeffreys, “Lagrange interpolation formula,” Methodsof Mathematical Physics, vol. 3, p. 260, 1988.
    [80]
    A. Tannenbaum, “Feedback stabilization of linear dynamical plants with uncertainty in the gain factor,” Int. J. Control, vol. 32, no. 1, pp. 1–16, Jan. 1980. doi: 10.1080/00207178008922838
    [81]
    R. Saeks and J. Murray, “Fractional representation, algebraic geometry, and the simultaneous stabilization problem,” IEEE Trans. Autom. Control, vol. 27, no. 4, pp. 895–903, Aug. 1982. doi: 10.1109/TAC.1982.1103005
    [82]
    M. Vidyasagar and N. Viswanadham, “Algebraic design techniques for reliable stabilization,” IEEE Trans. Autom. Control, vol. 27, no. 5, pp. 1085–1095, Aug. 1982. doi: 10.1109/TAC.1982.1103086
    [83]
    B. Ghosh and C. Byrnes, “Simultaneous stabilization and simultaneous pole-placement by nonswitching dynamic compensation,” IEEE Trans. Circuits Syst., vol. 30, no. 6, pp. 422–428, Jun. 1983. doi: 10.1109/TCS.1983.1085369
    [84]
    D. Zhao, A. Ringh, L. Qiu, and S. Z. Khong, “Low phase-rank approximation,” Linear Algebra Appl., vol. 639, pp. 177–204, Apr. 2022. doi: 10.1016/j.laa.2022.01.003
    [85]
    A. Ringh and L. Qiu, “Finsler geometries on strictly accretive matrices,” Linear Multilinear Algebra, vol. 70, no. 21, pp. 6753–6771, 2022. doi: 10.1080/03081087.2021.1968781
    [86]
    T. Yu, D. Zhao, and L. Qiu, “Phases of sectorial operators,” Integr. Equations Oper. Theory, vol. 95, no. 4, p. 31, Nov. 2023. doi: 10.1007/s00020-023-02752-5
    [87]
    Y. Liu, L. Liu, and Y. Lu, “The generalized sectorial decompositions of semi-sectorial operators,” Linear Multilinear Algebra, 2024. doi: 10.1080/03081087.2024.2311860
    [88]
    A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its Applications. New York, USA: Academic Press, 1979.
    [89]
    L. Woolcock and R. Schmid, “Mixed gain/phase robustness criterion for structured perturbations with an application to power system stability,” IEEE Control Syst. Lett., vol. 7, pp. 3193–3198, Jun. 2023. doi: 10.1109/LCSYS.2023.3290183
    [90]
    D. Zhang, J. Wang, F. Zhang, I. Lestas, and L. Qiu, “Entangled gain and phase analysis for internet,” 2023, working paper.
    [91]
    G. Zames, “On the input-output stability of time-varying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity,” IEEE Trans. Autom. Control, vol. 11, no. 2, pp. 228–238, Apr. 1966. doi: 10.1109/TAC.1966.1098316
    [92]
    J. Chen, W. Chen, and L. Qiu, “Phase analysis of N-port electrical networks under interconnections,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 4295–4300, 2023. doi: 10.1016/j.ifacol.2023.10.1798
    [93]
    J. Chen, W. Chen, C. Chen, and L. Qiu, “Phase preservation of N-port networks under general connections,” IEEE Trans. Autom. Control, 2024, conditionally accepted.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (41) PDF downloads(17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return