Citation: | J. Li and T. Zhou, “A robust large-scale multiagent deep reinforcement learning method for coordinated automatic generation control of integrated energy systems in a performance-based frequency regulation market,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1–14, Jul. 2025. doi: 10.1109/JAS.2024.124482 |
[1] |
X. Zhao, S. Zou, and Z. Ma, “Decentralized resilient H∞ load frequency control for cyber-physical power systems under DoS attacks,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1737–1751, Nov. 2021. doi: 10.1109/JAS.2021.1004162
|
[2] |
L. Yin, S. Luo, and C. Ma, “Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids,” Energy, vol. 232, p. 120964, Oct. 2021. doi: 10.1016/j.energy.2021.120964
|
[3] |
L. Xi, J. Wu, Y. Xu, and H. Sun, “Automatic generation control based on multiple neural networks with actor-critic strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 6, pp. 2483–2493, Jun. 2021. doi: 10.1109/TNNLS.2020.3006080
|
[4] |
J. Li, T. Yu, X. Zhang, F. Li, D. Lin, and H. Zhu, “Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system,” Appl. Energy, vol. 285, p. 116386, Mar. 2021. doi: 10.1016/j.apenergy.2020.116386
|
[5] |
Y. Sun, Y. Wang, Z. Wei, G. Sun, and X. Wu, “Robust H∞ load frequency control of multi-area power system with time delay: A sliding mode control approach,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 610–617, Mar. 2018. doi: 10.1109/JAS.2017.7510649
|
[6] |
X. Zhang, T. Tan, B. Zhou, T. Yu, B. Yang, and X. Huang, “Adaptive distributed auction-based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy,” Int. J. Electr. Power Energy Syst., vol. 124, p. 106371, Jan. 2021. doi: 10.1016/j.ijepes.2020.106371
|
[7] |
Z. Deng and C. Xu, “Frequency regulation of power systems with a wind farm by sliding-mode-based design,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1980–1989, Nov. 2022. doi: 10.1109/JAS.2022.105407
|
[8] |
B. Yildirim, M. Gheisarnejad, and M. H. Khooban, “A robust non-integer controller design for load frequency control in modern marine power grids,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 4, pp. 852–866, Aug. 2022. doi: 10.1109/TETCI.2021.3114735
|
[9] |
A. Zafari, M. Mehrasa, S. Bacha, K. Al-Haddad, and N. Hosseinzadeh, “A robust fractional-order control technique for stable performance of multilevel converter-based grid-tied DG units,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 10192–10201, Oct. 2022. doi: 10.1109/TIE.2021.3121725
|
[10] |
M. Barakat, “Novel chaos game optimization tuned-fractional-order PID fractional-order PI controller for load-frequency control of interconnected power systems,” Prot. Control Mod. Power Syst., vol. 7, no. 1, p. 16, May 2022. doi: 10.1186/s41601-022-00238-x
|
[11] |
L. Yin and D. Zheng, “Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems,” Appl. Energy, vol. 355, p. 122246, Feb. 2024. doi: 10.1016/j.apenergy.2023.122246
|
[12] |
A. Kumar and S. Pan, “Design of fractional order PID controller for load frequency control system with communication delay,” ISA Trans., vol. 129, pp. 138–149, Oct. 2022. doi: 10.1016/j.isatra.2021.12.033
|
[13] |
K. Hongesombut and R. Keteruksa, “Fractional order based on a flower pollination algorithm PID controller and virtual inertia control for microgrid frequency stabilization,” Electr. Power Syst. Res., vol. 220, p. 109381, Jul. 2023. doi: 10.1016/j.jpgr.2023.109381
|
[14] |
D. Guha, P. K. Roy, and S. Banerjee, “Adaptive fractional-order sliding-mode disturbance observer-based robust theoretical frequency controller applied to hybrid wind-diesel power system,” ISA Trans, vol. 133, pp. 160–183, Feb. 2023. doi: 10.1016/j.isatra.2022.06.030
|
[15] |
W. Zheng, Y. Q. Chen, X. Wang, Y. Chen, and M. Lin, “Enhanced fractional order sliding mode control for a class of fractional order uncertain systems with multiple mismatched disturbances,” ISA Trans., vol. 133, pp. 147–159, Feb. 2023. doi: 10.1016/j.isatra.2022.07.002
|
[16] |
X.-C. Shangguan, Y. He, C.-K. Zhang, L. Jiang, and M. Wu, “Adjustable event-triggered load frequency control of power systems using control-performance-standard-based fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 3297–3311, Aug. 2022. doi: 10.1109/TFUZZ.2021.3112232
|
[17] |
X. Chen, C. Zhao, and N. Li, “Distributed automatic load frequency control with optimality in power systems,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 307–318, Mar. 2021. doi: 10.1109/TCNS.2020.3024489
|
[18] |
Q. Li, Z. Peng, and B. Zhou, “Efficient learning of safe driving policy via human-AI copilot optimization,” in Proc. 10th Int. Conf. Learning Representations, 2022.
|
[19] |
J. Wu, Y. Zhou, H. Yang, Z. Huang, and C. Lv, “Human-guided reinforcement learning with sim-to-real transfer for autonomous navigation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 12, pp. 14745–14759, Dec. 2023. doi: 10.1109/TPAMI.2023.3314762
|
[20] |
L. Xi, L. Yu, Y. Xu, S. Wang, and X. Chen, “A novel multi-agent DDQN-AD method-based distributed strategy for automatic generation control of integrated energy systems,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2417–2426, Dec. 2020. doi: 10.1109/TSTE.2019.2958361
|
[21] |
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. doi: 10.1038/nature14236
|
[22] |
C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of PPO in cooperative multi-agent games,” in Proc. 36th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2022, pp. 1787.
|
[23] |
E. Wei, D. Wicke, D. Freelan, and S. Luke, “Multiagent soft Q-learning,” in Proc. AAAI Spring Symposia, Stanford University, Palo Alto, USA, 2018.
|
[24] |
S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, USA, 2019, pp. 2961–2970.
|
[25] |
R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6382–6393.
|
[26] |
K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying generalization in reinforcement learning,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, USA, 2019, pp. 1282–1289.
|
[27] |
R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A survey of zero-shot generalisation in deep reinforcement learning,” J. Artif. Intell. Res., vol. 76, pp. 201–264, Jan. 2023. doi: 10.1613/jair.1.14174
|
[28] |
T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys, “Learning from demonstrations for real world reinforcement learning,” arXiv preprint arXiv: 1704.03732, 2017.
|
[29] |
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” in Proc. 4th Int. Conf. Learning Representations, San Juan, Puerto Rico, 2016.
|
[30] |
D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D. Silver, “Distributed prioritized experience replay,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
|
[31] |
S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in Proc. 35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 1587–1596.
|