A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
T. Chen, R. Zhao, J. Chen, and Z. Zhang, “Data-driven active disturbance rejection control of plant-protection unmanned ground vehicle prototype: A fuzzy indirect iterative learning approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 0, pp. 1–3, Dec. 2024. doi: 10.1109/JAS.2023.124158
Citation: T. Chen, R. Zhao, J. Chen, and Z. Zhang, “Data-driven active disturbance rejection control of plant-protection unmanned ground vehicle prototype: A fuzzy indirect iterative learning approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 0, pp. 1–3, Dec. 2024. doi: 10.1109/JAS.2023.124158

Data-Driven Active Disturbance Rejection Control of Plant-Protection Unmanned Ground Vehicle Prototype: A Fuzzy Indirect Iterative Learning Approach

doi: 10.1109/JAS.2023.124158
More Information
  • loading
  • Tao Chen and Ruiyuan Zhao contributed equally to this work.
  • [1]
    H. Wang, T. Zhang, X. Zhang, and Q. Li, “Observer-based path tracking controller design for autonomous ground vehicles with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 749–761, 2023. doi: 10.1109/JAS.2023.123078
    [2]
    Z.-H. Pang, B. Ma, G.-P. Liu, and Q.-L. Han, “Data-driven adaptive control: An incremental triangular dynamic linearization approach,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 4949–4953, 2022.
    [3]
    R.-E. Precup, R.-C. Roman, and A. Safaei, Data-Driven Model-Free Controllers. CRC Press, 2021.
    [4]
    J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009. doi: 10.1109/TIE.2008.2011621
    [5]
    H. Wang, Z. Zuo, Y. Wang, H. Yang, and C. Hu, “Longitudinal velocity regulation of UGVs: A composite control approach for acceleration and deceleration,” IEEE Trans. Intelligent Transportation Systems, pp. 1–11, 2023.
    [6]
    S. Wang, J. Chen, and X. He, “An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV,” ISA Trans., vol. 129, pp. 564–579, 2022. doi: 10.1016/j.isatra.2022.01.012
    [7]
    K. He, C. Dong, and Q. Wang, “Active disturbance rejection control for uncertain nonlinear systems with sporadic measurements,” IEEE/CAA J.Autom. Sinica, vol. 9, no. 5, pp. 893–906, 2022. doi: 10.1109/JAS.2022.105566
    [8]
    J. Li, X. Qi, H. Wan, and Y. Xia, “Active disturbance rejection control: Theoretical results summary and future researches,” Control Theory &Applications, vol. 34, no. 3, pp. 281–295, 2017.
    [9]
    O. Castillo, H. Neyoy, J. Soria, P. Melin, and F. Valdez, “A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot,” Applied Soft Computing, vol. 28, pp. 150–159, 2015. doi: 10.1016/j.asoc.2014.12.002
    [10]
    W. Chang, Y. Li, and S. Tong, “Adaptive fuzzy backstepping tracking control for flexible robotic manipulator,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1923–1930, 2021. doi: 10.1109/JAS.2017.7510886
    [11]
    T. Wu, Z. Yu, and S. Li, “Observer-based adaptive fuzzy quantized fault-tolerant control of nonstrict-feedback nonlinear systems with sensor fault,” IEEE Trans. Fuzzy Systems, vol. 31, no. 6, pp. 1900–1911, 2023. doi: 10.1109/TFUZZ.2022.3216113
    [12]
    M. Van, Y. Sun, S. Mcllvanna, M.-N. Nguyen, M. O. Khyam, and D. Ceglarek, “Adaptive fuzzy fault tolerant control for robot manipulators with fixed-time convergence,” IEEE Trans. Fuzzy Systems, vol. 31, no. 9, pp. 3210–3219, 2023. doi: 10.1109/TFUZZ.2023.3247693
    [13]
    Y. Sun, J. Liu, Y. Gao, Z. Liu, and Y. Zhao, “Adaptive neural tracking control for manipulators with prescribed performance under input saturation,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 2, pp. 1037–1046, 2023. doi: 10.1109/TMECH.2022.3213441
    [14]
    Z. Liu, O. Zhang, Y. Gao, Y. Zhao, Y. Sun, and J. Liu, “Adaptive neural network-based fixed-time control for trajectory tracking of robotic systems,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 70, no. 1, pp. 241–245, 2023.
    [15]
    S. Preitl, R.-E. Precup, J. Fodor, and B. Bede, “Iterative feedback tuning in fuzzy control systems. theory and applications,” Acta Polytechnica Hungarica, vol. 3, no. 3, pp. 81–96, 2006.
    [16]
    R.-C. Roman, R.-E. Precup, E.-L. Hedrea, S. Preitl, I. A. Zamfirache, C.-A. Bojan-Dragos, and E. M. Petriu, “Iterative feedback tuning algorithm for tower crane systems,” Procedia Computer Science, vol. 199, pp. 157–165, 2022. doi: 10.1016/j.procs.2022.01.020
    [17]
    Q. Zheng, L. Q. Gaol, and Z. Gao, “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” in Proc. 46th IEEE Con. Decision and Control, 2007, pp. 3501–3506.
    [18]
    X. Li, S. Tian, and W. Ai, “Active disturbance rejection based iterative learning control,” in Proc. Chinese Control and Decision Conf., 2016, pp. 6645–6650.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (124) PDF downloads(41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return