A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
X. Du, L. Zou, and  M. Zhong,  “Set-membership filtering approach to dynamic event-triggered fault estimation for a class of nonlinear time-varying complex networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 638–648, Mar. 2024. doi: 10.1109/JAS.2023.124119
Citation: X. Du, L. Zou, and  M. Zhong,  “Set-membership filtering approach to dynamic event-triggered fault estimation for a class of nonlinear time-varying complex networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 638–648, Mar. 2024. doi: 10.1109/JAS.2023.124119

Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks

doi: 10.1109/JAS.2023.124119
Funds:  This work was supported in part by the National Natural Science Foundation of China (62233012, 62273087), the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the Shanghai Pujiang Program of China (22PJ1400400)
More Information
  • The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks, utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism (DETM). In order to optimize communication resource utilization, the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not. To guarantee a satisfactory estimation performance for the fault signal, an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals. The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains. The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator, ensuring that the specified performance requirements are met under certain conditions. Then, the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided. Finally, a numerical example is conducted to demonstrate the effectiveness of the designed estimator.

     

  • loading
  • [1]
    N. Hou, Z. Wang, H. Dong, J. Hu, and X. Liu, “Sensor fault estimation for nonlinear complex networks with time delays under saturated innovations: A binary encoding scheme,” IEEE Trans. Network Science and Engineering, vol. 9, no. 6, pp. 4171–4183, Nov. 2022. doi: 10.1109/TNSE.2022.3196264
    [2]
    J. Hu, Z. Wang, and G.-P. Liu, “Delay compensation-based state estimation for time-varying complex networks with incomplete observations and dynamical BIAS,” IEEE Trans. Cyber., vol. 52, no. 11, pp. 12071–12083, Nov. 2022. doi: 10.1109/TCYB.2020.3043283
    [3]
    S. Liu, Z. Wang, L. Wang, and G. Wei, “H Pinning control of complex dynamical networks under dynamic quantization effects: A coupled backward Riccati equation approach,” IEEE Trans. Cyber., vol. 52, no. 8, pp. 7377–7387, Aug. 2022. doi: 10.1109/TCYB.2020.3021982
    [4]
    W. Song, Z. Wang, Z. Li, H. Dong, and Q.-L. Han, “Protocol-based particle filtering for nonlinear complex networks: Handling non-Gaussian noises and measurement censoring,” IEEE Trans. Network Science and Engineering, vol. 10, no. 1, pp. 128–139, Jan. 2023. doi: 10.1109/TNSE.2022.3205553
    [5]
    S. Wang, Z. Wang, H. Dong, and Y. Chen, “A dynamic event-triggered approach to recursive nonfragile filtering for complex networks with sensor saturations and switching topologies,” IEEE Trans. Cyber., vol. 52, no. 10, pp. 11041–11054, 2022. doi: 10.1109/TCYB.2021.3049461
    [6]
    G. Chen, “Searching for best network topologies with optimal synchronizability: A brief review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 573–577, Apr. 2022. doi: 10.1109/JAS.2022.105443
    [7]
    J. Hu, C. Jia, Y. Hui, and H. Liu, “Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 941–944, May 2022. doi: 10.1109/JAS.2022.105581
    [8]
    X. Liu, X. Su, P. Shi, S. K. Nguang, and C. Shen, “Fault detection filtering for nonlinear switched systems via event-triggered communication approach,” Automatica, vol. 101, pp. 365–376, Mar. 2019. doi: 10.1016/j.automatica.2018.12.006
    [9]
    M. Gao, S. Yang, L. Sheng, and D. Zhou, “Fault diagnosis for time-varying systems with multiplicative noises over sensor networks subject to Round-Robin protocol,” Neurocomputing, vol. 346, pp. 65–72, Jun. 2019. doi: 10.1016/j.neucom.2018.08.087
    [10]
    F. M. Shakiba, M. Shojaee, S. M. Azizi, and M. Zhou, “Real-time sensing and fault diagnosis for transmission lines,” Int. J. Network Dynamics and Intelligence, vol. 1, no. 1, pp. 36–47, Dec. 2022.
    [11]
    Y. Xu, J. Zhou, H. Rao, R. Lu, and L. Xie, “Reset moving horizon estimation for quantized discrete time systems,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4199–4205, Sept. 2021. doi: 10.1109/TAC.2020.3037140
    [12]
    H. Yang, C. Huang, B. Jiang, and M. Polycarpou, “Fault estimation and accommodation of interconnected systems: A separation principle,” IEEE Trans. Cyber., vol. 49, no. 12, pp. 4103–4116, Dec. 2019. doi: 10.1109/TCYB.2018.2857820
    [13]
    X. Du, L. Zou, Z. Zhao, Y. Wang, and M. Zhong, “Unknown-input-observer-based approach to dynamic event-triggered fault estimation for Markovian jump systems with time-varying delays,” Science China Information Sciences, vol. 65, p. 132203, Mar. 2022. doi: 10.1007/s11432-020-3178-3
    [14]
    F. C. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs,” IEEE Trans. Autom. Control, vol. 13, no. 1, pp. 22–28, Feb. 1968. doi: 10.1109/TAC.1968.1098790
    [15]
    N. Xia, F. Yang, and Q.-L. Han, “Distributed networked set-membership filtering with ellipsoidal state estimations,” Information Sciences, vol. 432, pp. 52–62, Mar. 2018. doi: 10.1016/j.ins.2017.12.010
    [16]
    M. Zhong, S. Ding, Q.-L. Han, X. He, and D. Zhou, “A Krein space-based approach to event-triggered H filtering for linear discrete time-varying systems,” Automatica, vol. 135, p. 110001, Jan. 2022. doi: 10.1016/j.automatica.2021.110001
    [17]
    M. Zhong, S. X. Ding, D. Zhou, and X. He, “An H i/H optimization approach to event-triggered fault detection for linear discrete time systems,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4464–4471, Oct. 2020. doi: 10.1109/TAC.2020.3006811
    [18]
    W. Li, Y. Niu, and Z. Cao, “Event-triggered sliding mode control for multi-agent systems subject to channel fading,” Int. J. Systems Science, vol. 53, no. 6, pp. 1233–1244, 2022. doi: 10.1080/00207721.2021.1995527
    [19]
    L. Wang, S. Liu, Y. Zhang, D. Ding, and X. Yi, “Non-fragile l2l state estimation for time-delayed artificial neural networks: an adaptive event-triggered approach,” Int. J. Systems Science, vol. 53, no. 10, pp. 2247–2259, Jul. 2022. doi: 10.1080/00207721.2022.2049919
    [20]
    Y. Ju, D. Ding, X. He, Q.-L. Han, and G. Wei, “Consensus control of multi-agent systems using fault-estimation-in-the-loop: Dynamic event-triggered case,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1440–1451, Aug. 2022. doi: 10.1109/JAS.2021.1004386
    [21]
    Q. Li, Z. Wang, J. Hu, and W. Sheng, “Distributed state and fault estimation over sensor networks with probabilistic quantizations: The dynamic event-triggered case,” Automatica, vol. 131, p. 109784, Sept. 2021. doi: 10.1016/j.automatica.2021.109784
    [22]
    J. Wang, F. Fang, X. Yi, and Y. Liu, “Dynamic event-triggered fault estimation and sliding mode fault-tolerant control for networked control systems with sensor faults,” Applied Mathe. and Computation, vol. 389, p. 125558, Jan. 2021. doi: 10.1016/j.amc.2020.125558
    [23]
    X. Wang, Z. Fei, T. Wang, and L. Yang, “Dynamic event-triggered actuator fault estimation and accommodation for dynamical systems,” Inform. Sciences, vol. 525, pp. 119–133, Jul. 2020. doi: 10.1016/j.ins.2020.03.016
    [24]
    X. Liu, X. Su, P. Shi, and C. Shen, “Observer-based sliding mode control for uncertain fuzzy systems via event-triggered strategy,” IEEE Trans. Fuzzy Systems, vol. 27, no. 11, pp. 2190–2201, Nov. 2019. doi: 10.1109/TFUZZ.2019.2895804
    [25]
    Y. Liu, Z. Wang, and D. Zhou, “UIO-based fault estimation for a class of time-varying systems with event-triggered transmissions,” IFAC Papersonline, vol. 51, no. 24, pp. 46–51, Dec. 2018. doi: 10.1016/j.ifacol.2018.09.527
    [26]
    L. Liu, W. Zhou, X. Li, and Y. Sun, “Dynamic event-triggered approach for cluster synchronization of complex dynamical networks with switching via pinning control,” Neurocomputing, vol. 340, pp. 32–41, May 2019. doi: 10.1016/j.neucom.2019.02.044
    [27]
    Z. Gao, X. Liu, and M. Chen, “Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances,” IEEE Trans. Industrial Electronics, vol. 63, no. 4, pp. 2537–2547, Apr. 2016.
    [28]
    S. Boyd, L. E. Ghaoul, E. Feron, and V. Balakrishnan, “Linear matrix inequalities in system and control theory”, in Society for Industrial and Applied Mathematics, Philadelphia, USA: Society for Industrial and Applied Mathematics, 1994, vol. 15.
    [29]
    Y. Li, Z. Wang, R. Lu, and Y. Xu, “Distributed filtering under constrained bit rate over wireless sensor networks: Dealing with bit rate allocation protocol,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1642–1654, Mar. 2023. doi: 10.1109/TAC.2022.3159486
    [30]
    Y. Xu, W. Lv, W. Lin, R. Lu, and D. E. Quevedo, “On extended state estimation for nonlinear uncertain systems with round-robin protocol,” Automatica, vol. 138, p. 110154, Apr. 2022. doi: 10.1016/j.automatica.2021.110154
    [31]
    Y. Xu, Z. Yao, R. Lu, and B. K. Ghosh, “A novel fixed-time protocol for first-order consensus tracking with disturbance rejection,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6180–6186, Nov. 2022. doi: 10.1109/TAC.2021.3131549
    [32]
    H. Yu, J. Hu, B. Song, H. Liu, and X. Yi, “Resilient energy-to-peak filtering for linear parameter-varying systems under random access protocol,” Int. J. Systems Science, vol. 53, no. 11, pp. 2421–2436, Aug. 2022. doi: 10.1080/00207721.2022.2053232
    [33]
    P. Wen, X. Li, N. Hou, and S. Mu, “Distributed recursive fault estimation with binary encoding schemes over sensor networks,” Systems Science &Control Engineering, vol. 10, no. 1, pp. 417–427, 2022.
    [34]
    F. Yang, J. Li, H. Dong, and Y. Shen, “Proportional-integral-type estimator design for delayed recurrent neural networks under encoding-decoding mechanism,” Int. J. Systems Science, vol. 53, no. 13, pp. 2729–2741, Oct. 2022. doi: 10.1080/00207721.2022.2063968

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (386) PDF downloads(43) Cited by()

    Highlights

    • A new fault estimation problem is investigated under the dynamic event-triggered mechanism
    • A non-fragile event-triggering condition is introduced to describe the rounding errors
    • A new UIO-based fault estimator is designed to ensure optimal performance
    • The developed filtering algorithm is recursive that is suitable for online applications

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return