IEEE/CAA Journal of Automatica Sinica
Citation: | R. Wang, Z. Zhou, K. Li, T. Zhang, L. Wang, X. Xu, and X. Liao, “Learning to branch in combinatorial optimization with graph pointer networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 157–169, Jan. 2024. doi: 10.1109/JAS.2023.124113 |
[1] |
P. Festa, “A brief introduction to exact, approximation, and heuristic algorithms for solving hard combinatorial optimization problems,” in Proc. 16th Int. Conf. Transparent Optical Networks, Graz, Austria, 2014, pp. 1–20.
|
[2] |
A. Schrijver, “On the history of combinatorial optimization (till 1960),” Handb. Oper. Res. Manage. Sci., vol. 12, pp. 1–68, 2005.
|
[3] |
K. Abe, I. Sato, and M. Sugiyama, “Solving NP-hard problems on graphs by reinforcement learning without domain knowledge,” arXiv preprint arXiv: 1905.11623, 2020
|
[4] |
E. Yolcu and B. Póczos, “Learning local search heuristics for Boolean satisfiability,” in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 7992–8003.
|
[5] |
Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: A methodological tour d’Horizon,” Eur. J. Oper. Res., vol. 290, no. 2, pp. 405–421, Apr. 2021. doi: 10.1016/j.ejor.2020.07.063
|
[6] |
D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning,” Discrete Optim., vol. 19, pp. 79–102, Feb. 2016. doi: 10.1016/j.disopt.2016.01.005
|
[7] |
A. H. Land and A. G. Doig, “An automatic method for solving discrete programming problems,” in 50 Years of Integer Programming 1958–2008, M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds. Berlin, Germany: Springer, 2010, pp. 105–132.
|
[8] |
N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman, “Learning combinatorial optimization on graphs: A survey with applications to networking,” IEEE Access, vol. 8, pp. 120388–120416, Jun. 2020. doi: 10.1109/ACCESS.2020.3004964
|
[9] |
E. A. Silver, “An overview of heuristic solution methods,” J. Oper. Res. Soc., vol. 55, no. 9, pp. 936–956, May 2004. doi: 10.1057/palgrave.jors.2601758
|
[10] |
C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, Sept. 2003. doi: 10.1145/937503.937505
|
[11] |
H. He, H. Daume III, and J. Eisner, “Learning to search in branch and bound algorithms,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 3293–3301.
|
[12] |
E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to branch in mixed integer programming,” in Proc. 30th AAAI Conf. Artificial Intelligence, Phoenix, Arizona, 2016, pp. 724–731.
|
[13] |
M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial optimization with graph convolutional neural networks,” in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, p. 1396.
|
[14] |
P. Gupta, M. Gasse, E. B. Khalil, M. P. Kumar, A. Lodi, and Y. Bengio, “Hybrid models for learning to branch,” in Proc. 34th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, p. 1518.
|
[15] |
G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio, “Parameterizing branch-and-bound search trees to learn branching policies,” in Proc. AAAI Conf. Artificial Intelligence, 2021, pp. 3931–3939.
|
[16] |
O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. 28th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2015, pp. 2692–2700.
|
[17] |
I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization with reinforcement learning,” in Proc. 5th Int. Conf. Learning Representations, Toulon, France, 2016.
|
[18] |
M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takáč, “Deep reinforcement learning for solving the vehicle routing problem,” arXiv preprint arXiv: 1802.04240, 2018.
|
[19] |
H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6351–6361.
|
[20] |
A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and A. Singh, “Learning heuristics over large graphs via deep reinforcement learning,” arXiv preprint arXiv: 1903.03332, 2019.
|
[21] |
A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning algorithms for quadratic assignment with graph neural networks,” arXiv preprint arXiv: 1706.07450, 2017.
|
[22] |
C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional network technique for the travelling salesman problem,” arXiv preprint arXiv: 1906.01227, 2019.
|
[23] |
Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional networks and guided tree search,” in Proc. 32nd Int. Conf. Neural Information Processing Systems, Montréal, Canada, 2018, pp. 537–546.
|
[24] |
M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau, “Learning heuristics for the TSP by policy gradient,” in Proc. 15th Int. Conf. Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Delft, The Netherlands, 2018, pp. 170–181.
|
[25] |
W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems,” in Proc. 7th Int. Conf. Learning Representations, New Orleans, USA, 2019.
|
[26] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 5998–6008.
|
[27] |
K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective optimization,” IEEE Trans. Cyber., vol. 51, no. 6, pp. 3103–3114, Jun. 2021. doi: 10.1109/TCYB.2020.2977661
|
[28] |
A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-based approximation of strong branching,” INFORMS J. Comput., vol. 29, no. 1, pp. 185–195, Jan. 2017. doi: 10.1287/ijoc.2016.0723
|
[29] |
C. Hansknecht, I. Joormann, and S. Stiller, “Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem,” arXiv preprint arXiv: 1805.01415, 2018.
|
[30] |
V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. J. Li, O. Vinyals, and Y. Zwols, “Solving mixed integer programs using neural networks,” arXiv preprint arXiv: 2012.13349, 2020.
|
[31] |
E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization problems,” Handbook of Applied Optimization, vol. 1, no. 1, pp. 65–77, 2002.
|
[32] |
A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of learning methods,” ACM Comput. Surv., vol. 50, no. 2, p. 21, Mar. 2018.
|
[33] |
P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, Mar. 2006. doi: 10.1007/s10994-006-6226-1
|
[34] |
T. Joachims, “Optimizing search engines using clickthrough data,” in Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Edmonton, Canada, 2002, pp. 133–142.
|
[35] |
C. J. C. Burges, “From RankNet to LambdaRank to LambdaMART: An overview,” Microsoft Corp., Seattle, USA, Microsoft Research Technical Report MSR-TR-2010-82, 2010.
|
[36] |
E. Balas and A. Ho, “Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study,” Combinatorial Optimization I, M. W. Padberg, Ed. Berlin, Germany: Springer, 1980, pp. 37–60.
|
[37] |
G. Cornuejols, R. Sridharan, and J. M. Thizy, “A comparison of heuristics and relaxations for the capacitated plant location problem,” Eur. J. Oper. Res., vol. 50, no. 3, pp. 280–297, Feb. 1991. doi: 10.1016/0377-2217(91)90261-S
|
[38] |
D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker, Decision Diagrams for Optimization. Cham, Germany: Springer, 2016.
|