Citation:  X. Shi, X. Xu, G. Wen, and J. Cao, “Fixedtime gradient flows for solving constrained optimization: A unified approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 8, pp. 1849–1864, Aug. 2024. doi: 10.1109/JAS.2023.124089 
[1] 
J. Wang and N. Elia, “A control perspective for centralized and distributed convex optimization,” in Proc. IEEE Decision Control and Eur. Control Conf., Orlando, FL, Dec. 2011, pp. 3800–3805.

[2] 
Q. Liu, S. Yang, and J. Wang, “A collective neurodynamic approach to distributed constrained optimization,” IEEE Trans. Neural Netw., vol. 28, no. 8, pp. 1747–1758, 2017.

[3] 
J. Cortés, “Finitetime convergent gradient flows with applications to network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006. doi: 10.1016/j.automatica.2006.06.015

[4] 
C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Image Process., vol. 359, no. 7, pp. 3–369, Mar. 1998.

[5] 
W. Su, S. Boyd, and E. Candes, “A differential equation for modeling nesterov’s accelerated gradient method: Theory and insights,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2510–2518.

[6] 
A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspective on accelerated methods in optimization,” Nat. Acad. Sci., vol. 113, no. 47, pp. E7351–E7358, 2016.

[7] 
H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont, “Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity,” Math. Program., vol. 168, no. 1–2, pp. 123–175, 2018. doi: 10.1007/s1010701609928

[8] 
A. Vassilis, A. JeanFrançois, and D. Charles, “The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b ≤ 3,” SIAM J. Optim., vol. 28, pp. 551–574, 2018. doi: 10.1137/17M1128642

[9] 
O. Sebbouh, C. Dossal, and A. Rondepierre, “Convergence rates of damped inertial dynamics under geometric conditions and perturbations,” SIAM J. Optim., vol. 30, pp. 1850–1877, 2020. doi: 10.1137/19M1272767

[10] 
J. M. Sanz Serna, and K. C. Zygalakis, “The connections between Lyapunov functions for some optimization algorithms and differential equations,” SIAM. J. Numer. Anal., vol. 59, no. 3, pp. 1542–1565, 2021. doi: 10.1137/20M1364138

[11] 
S. P. Bhat and D. S. Bernstein, “Finitetime stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. doi: 10.1137/S0363012997321358

[12] 
S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finitetime control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no. 11, pp. 1957–1964, 2005. doi: 10.1016/j.automatica.2005.07.001

[13] 
Y. Shen and Y. Huang, “Global finitetime stabilisation for a class of nonlinear systems,” Int. J. Syst. Sci., vol. 43, no. 1, pp. 73–78, 2012. doi: 10.1080/00207721003770569

[14] 
C. Aouiti and M. Bessifi, “Periodically intermittent control for finitetime synchronization of delayed quaternionvalued neural networks,” Neural. Comput. Appl., vol. 33, pp. 6527–6547, 2021. doi: 10.1007/s00521020054171

[15] 
O. Romero and M. Benosman, “Finitetime convergence in continuoustime optimization,” in Proc. 37th Int. Conf. Machine Learning, PMLR, 2020, pp. 8200–8209.

[16] 
F. Chen and W. Ren, “Sign projected gradient flow: A continuous time approach to convex optimization with linear equality constraints,” Automatica, vol. 120, p. 109156, 2020. doi: 10.1016/j.automatica.2020.109156

[17] 
Y. Wei, Y. Chen, X. Zhao, and J. Cao, “Analysis and synthesis of gradient algorithms based on fractionalorder system theory,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 53, pp. 3–1906, 1895.

[18] 
J. Zhou, X. Wang, S. Mou, and B. D. Anderson, “Finitetime distributed linear equation solver for solutions with minimum l_{1}norm,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1691–1696, 2020. doi: 10.1109/TAC.2019.2932031

[19] 
X. Shi, X. Xu, X. Yu, and J. Cao, “Finitetime convergent primaldual gradient dynamics with applications to distributed optimization,” IEEE Trans. Cybern., vol. 53, no. 5, pp. 3240–3252, 2023. doi: 10.1109/TCYB.2022.3179519

[20] 
X. Shi, G. Wen, J. Cao, and X. Yu, “Finitetime distributed average tracking for multiagent optimization with bounded inputs,” IEEE Trans. Autom. Control, vol. 68, no. 8, pp. 4948–4955, 2023. doi: 10.1109/TAC.2022.3209406

[21] 
X. Shi, G. Wen and X. Yu, “Finitetime convergent algorithms for timevarying distributed optimization,” IEEE Control Syst. Lett., vol. 7, pp. 3223–3228, 2023. doi: 10.1109/LCSYS.2023.3312297

[22] 
A. Polyakov, “Nonlinear feedback design for fixedtime stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, pp. 2106–2110, 2012. doi: 10.1109/TAC.2011.2179869

[23] 
Y. Liu, H. Li, Z. Zuo, X. Li, and R. Lu, “An overview of finite/fixedtime control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, 2022.

[24] 
C. Aouiti, E. A. Assali, and Y. E. Foutayeni, “Finitetime and fixedtime synchronization of inertial CohenGrossbergtype neural networks with time varying delays,” Neural Processing Letters, vol. 50, pp. 2407–2436, 2019. doi: 10.1007/s11063019100188

[25] 
A. M. Alimi, C. Aouiti, and E. A. Assali, “Finitetime and fixedtime synchronization of a class of inertial neural networks with multiproportional delays and its application to secure communication,” Neurocomputing, vol. 332, pp. 29–43, 2019. doi: 10.1016/j.neucom.2018.11.020

[26] 
J. Cao and R. Li, “Fixedtime synchronization of delayed memristorbased recurrent neural networks,” Sci. China Inf. Sci., vol. 60, no. 3, p. 032201, 2017.

[27] 
C. Aouiti and F. Miaadi, “A new fixedtime stabilization approach for neural networks with timevarying delays,” Neural. Comput. Appl., vol. 32, pp. 3295–3309, 2020. doi: 10.1007/s0052101904586y

[28] 
C. Aouiti, M. Bessifi, and X. Li, “Finitetime and fixedtime synchronization of complexvalued recurrent neural networks with discontinuous activations and timevarying delays,” Circuits,Syst.,Signal Process., vol. 39, no. 11, pp. 5406–5428, 5406.

[29] 
C. Aouiti, Q. Hui, H. Jallouli, and E. Moulay, “Sliding mode controlbased fixedtime stabilization and synchronization of inertial neural networks with timevarying delays,” Neural. Comput. Appl., vol. 33, pp. 11555–11572, 2021. doi: 10.1007/s0052102105833x

[30] 
K. Garg and D. Panagou, “Fixedtime stable gradient flows: Applications to continuoustime optimization,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2002–2015, 2020.

[31] 
P. Budhraja, M. Baranwal, K. Garg, and A. Hota, “Breaking the convergence barrier: Optimization via fixedtime convergent flows,” in Proc. AAAI Conf. Artificial Intelligence, vol. 36, no. 6, 2022.

[32] 
K. Garg, M. Baranwal, R. Gupta, and M. Benosman, “Fixedtime stable proximal dynamical system for solving MVIPs,” IEEE Trans. Autom. Control, vol. 68, no. 8, pp. 5029–5036, 2023. doi: 10.1109/TAC.2022.3214795

[33] 
X. Ju, D. Hu, C. Li, X. He, and G. Feng, “A novel fixedtime converging neurodynamic approach to mixed variational inequalities and applications,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 12942–12953, 2022. doi: 10.1109/TCYB.2021.3093076

[34] 
X. He, H. Wen, and T. Huang, “A fixedtime projection neural network for solving L_{1}minimization problem,” IEEE Trans. Neural Netw., vol. 33, no. 12, pp. 7818–7828, Dec. 2022.

[35] 
Z. Wu, Z. Li and J. Yu, “Designing zerogradientsum protocols for finitetime distributed optimization problem,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 52, no. 7, pp. 4569–4577, Jul. 2022. doi: 10.1109/TSMC.2021.3098641

[36] 
X. Shi, X. Yu, J. Cao, and G. Wen, “Continuous distributed algorithms for solving linear equations in finite time,” Automatica, vol. 113, p. 108755, 2020. doi: 10.1016/j.automatica.2019.108755

[37] 
L. Guo, X. Shi, and J. Cao, “Exponential convergence of primaldual dynamical system for linear constrained optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 745–748, 2022. doi: 10.1109/JAS.2022.105485

[38] 
H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximalgradient methods under the PolyakŁojasiewicz condition,” in Proc. Eur. Conf. Mach. Learn., Sept. 2016, pp. 795–811.

[39] 
X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primaldual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, 2022.

[40] 
X. Shi, J. Cao, X. Yu, and G. Wen, “Finitetime stability for network systems with discontinuous dynamics over signed digraphs,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4874–4881, 2020. doi: 10.1109/TAC.2019.2960000

[41] 
F. Xiao, L. Wang, J. Chen, and Y. Gao, “Finitetime formation control for multiagent systems,” Automatica, vol. 45, no. 11, pp. 2605–2611, 2009. doi: 10.1016/j.automatica.2009.07.012

[42] 
X. Shi, J. Cao, G. Wen, and X. Yu, “Finitetime stability for network systems with nonlinear protocols over signed digraphs,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1557–1569, 2020. doi: 10.1109/TNSE.2019.2941553

[43] 
Z. Zuo and L. Tie, “A new class of finitetime nonlinear consensus protocols for multiagent systems,” Int. J. Control, vol. 87, no. 2, pp. 363–370, 2014. doi: 10.1080/00207179.2013.834484

[44] 
J. Cortés, “Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and stability,” IEEE Control Syst. Mag., vol. 28, no. 3, pp. 36–73, 2008. doi: 10.1109/MCS.2008.919306

[45] 
M. Goldberg, “Equivalence constants for l _{p} norms of matrices,” Lin. Multilin. Algebra, vol. 21, no. 2, pp. 173–179, 1987. doi: 10.1080/03081088708817789

[46] 
X. Yu, Y. Feng and Z. Man, “Terminal sliding mode control — An overview,” IEEE Open J. Ind. Electron. Soc., vol. 2, pp. 36–52, 2021. doi: 10.1109/OJIES.2020.3040412

[47] 
N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim., vol. 123, no. 1, pp. 3–231, 2014.

[48] 
A. Themelis, L. Stella, and P. Patrinos, “Forwardbackward envelope for the sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms,” SIAM J. Optim., vol. 28, no. 3, pp. 2274–2303, 2018. doi: 10.1137/16M1080240

[49] 
S. HassanMoghaddam and M. R. Jovanović, “Proximal gradient flow and DouglasRachford splitting dynamics: Global exponential stability via integral quadratic constraints,” Automatica, vol. 123, p. 109311, 2021. doi: 10.1016/j.automatica.2020.109311

[50] 
P. Wang, S. Mou, J. Lian, and W. Ren, “Solving a system of linear equations: From centralized to distributed algorithms,” Annu. Rev. Control, vol. 47, pp. 306–322, 2019. doi: 10.1016/j.arcontrol.2019.04.008

[51] 
M. Yang and C. Y. Tang, “A distributed algorithm for solving general linear equations over networks,” in Proc. IEEE Conf. Decis. Control, pp. 3580–3585, Dec. 2015.

[52] 
A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control, New York, NY: Wiley, 2013.

[53] 
A. Cherukuri and J. Cortés, “Distributed generator coordination for initialization and anytime optimization in economic dispatch,” IEEE Trans. Control Netw. Syst., vol. 2, no. 3, pp. 226–237, 2015. doi: 10.1109/TCNS.2015.2399191
