A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
N. Wang, X. Liang, H. Li, and X. Lu, “Decentralized optimal control and stabilization of interconnected systems with asymmetric information,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 698–707, Mar. 2024. doi: 10.1109/JAS.2023.124044
Citation: N. Wang, X. Liang, H. Li, and X. Lu, “Decentralized optimal control and stabilization of interconnected systems with asymmetric information,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 698–707, Mar. 2024. doi: 10.1109/JAS.2023.124044

Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information

doi: 10.1109/JAS.2023.124044
Funds:  This work was supported by the National Natural Science Foundation of China (62273213, 62073199, 62103241), Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds (ZR2022LZH001), Natural Science Foundation of Shandong Province (ZR2020MF095, ZR2021QF107), Taishan Scholarship Construction Engineering, the Original Exploratory Program Project of National Natural Science Foundation of China (62250056), Major Basic Research of Natural Science Foundation of Shandong Province (ZR2021ZD14) and High-level Talent Team Project of Qingdao West Coast New Area (RCTD-JC-2019-05)
More Information
  • The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information. Compared with previous work, a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time. The main challenge lies in three aspects: Firstly, the asymmetric information results in coupling between control and estimation and failure of the separation principle. Secondly, two extra unknown variables are generated by asymmetric information (different information filtration) when solving forward-backward stochastic difference equations. Thirdly, the existence of additive noise makes the study of mean-square boundedness an obstacle. The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise. A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.

     

  • loading
  • [1]
    A. Azarbahram, A. Amini, and M. Sojoodi, “Resilient fixed-order distributed dynamic output feedback load frequency control design for interconnected multi-area power systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1139–1151, 2019. doi: 10.1109/JAS.2019.1911687
    [2]
    Z. Chen and N. Li, “An optimal control-based distributed reinforcement learning framework for a class of non-convex objective functionals of the multi-agent network,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2081–2093, 2023.
    [3]
    D. Liu, H. Liu, and J. Xi, “Fully distributed adaptive fault-tolerant formation control for octorotors subject to multiple actuator faults,” Aerosp. Sci. Technol., vol. 108, p. 106366, 2021. doi: 10.1016/j.ast.2020.106366
    [4]
    A. Villalonga, E. Negri, G. Biscardo, F. Castano, R. E. Haber, L. Fumagalli, and M. Macchi, “A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins,” Annu. Rev. Control, vol. 51, pp. 357–373, 2021. doi: 10.1016/j.arcontrol.2021.04.008
    [5]
    J. Marschak, “Elements for a theory of teams,” Manage. Sci., vol. 1, no. 2, pp. 127–137, 1955.
    [6]
    R. Radner, “Team decision problems,” The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 857–881, 1962. doi: 10.1214/aoms/1177704455
    [7]
    C. H. Papadimitriou and J. Tsitsiklis, “On the complexity of designing distributed protocols,” Inf. Control., vol. 53, no. 3, pp. 211–218, 1982. doi: 10.1016/S0019-9958(82)91034-8
    [8]
    H. S. Witsenhausen, “A counterexample in stochastic optimum control,” SIAM J. Control, vol. 6, no. 1, pp. 131–147, 1968. doi: 10.1137/0306011
    [9]
    P. P. Khargonekar and A. Ozguler, “Decentralized control and periodic feedback,” IEEE Trans. Autom. Control, vol. 39, no. 4, pp. 877–882, 1994. doi: 10.1109/9.286275
    [10]
    Q. P. Ha and H. Trinh, “Observer-based control of multi-agent systems under decentralized information structure,” Int. J. Syst. Sci., vol. 35, no. 12, pp. 719–728, 2004. doi: 10.1080/00207720412331322975
    [11]
    S. Biswal, K. Elamvazhuthi, and S. Berman, “Decentralized control of multi-agent systems using local density feedback,” IEEE Trans. Autom. Control, vol. 67, no. 8, pp. 3920–3932, 2022.
    [12]
    Y. Ouyang, S. M. Asghari, and A. Nayyar, “Optimal local and remote controllers with unreliable communication,” in Proc. IEEE Conf. Decis. Control, 2016, pp. 6024–6029.
    [13]
    X. Liang, Q. Qi, H. Zhang, and L. Xie, “Decentralized control for networked control systems with asymmetric information,” IEEE Trans. Autom. Control, vol. 67, no. 4, pp. 2076–2083, 2022. doi: 10.1109/TAC.2021.3073069
    [14]
    J. Xu, W. Wang, and H. Zhang, “Stabilization of discrete-time multiplicative-noise system under decentralized controllers,” IEEE Trans. Autom. Control, vol. 67, p. 10, 2022.
    [15]
    Y. Zhu and E. Fridman, “Predictor methods for decentralized control of large-scale systems with input delays,” Automatica, vol. 116, p. 108903, 2020. doi: 10.1016/j.automatica.2020.108903
    [16]
    J. Peng, B. Fan, Z. Tu, W. Zhang, and W. Liu, “Distributed periodic event-triggered optimal control of DC microgrids based on virtual incremental cost,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 624–634, 2022. doi: 10.1109/JAS.2022.105452
    [17]
    A. Mahajan, N. C. Martins, M. C. Rotkowitz, and S. Yüksel, “Information structures in optimal decentralized control,” in Proc. IEEE Conf. Decis. Control, 2012, pp. 1291–1306.
    [18]
    S. Yuksel, “Stochastic nestedness and the belief sharing information pattern,” IEEE Trans. Autom. Control, vol. 54, no. 12, pp. 2773–2786, 2009. doi: 10.1109/TAC.2009.2031723
    [19]
    J. M. Ooi, S. M. Verbout, J. T. Ludwig, and G. W. Wornell, “A separation theorem for periodic sharing information patterns in decentralized control,” IEEE Trans. Autom. Control, vol. 42, no. 11, pp. 1546–1550, 1997. doi: 10.1109/9.649699
    [20]
    A. Mahajan, “Optimal decentralized control of coupled subsystems with control sharing,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2377–2382, 2013. doi: 10.1109/TAC.2013.2251807
    [21]
    N. Matni and J. C. Doyle, “Optimal distributed LQG state feedback with varying communication delay,” in Proc. 52nd IEEE Conf. Decision and Control, 2013, pp. 5890–5896.
    [22]
    N. Nayyar, D. Kalathil, and R. Jain, “Optimal decentralized control with asymmetric one-step delayed information sharing,” IEEE Trans. Control. Netw. Syst., vol. 5, no. 1, pp. 653–663, 2018. doi: 10.1109/TCNS.2016.2641802
    [23]
    Y. Wang, J. Xiong, and D. W. Ho, “Globally optimal state-feedback LQG control for large-scale systems with communication delays and correlated subsystem process noises,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4196–4201, 2019. doi: 10.1109/TAC.2019.2892490
    [24]
    O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI systems over unreliable communication links,” Automatica, vol. 42, no. 9, pp. 1429–1439, 2006. doi: 10.1016/j.automatica.2006.03.011
    [25]
    Y.-C. Ho and K.-C. Chu, “Team decision theory and information structures in optimal control problems–Part I,” IEEE Trans. Autom. Control, vol. 17, no. 1, pp. 15–22, 1972. doi: 10.1109/TAC.1972.1099850
    [26]
    A. Lamperski and J. C. Doyle, “Dynamic programming solutions for decentralized state-feedback LQG problems with communication delays,” in Proc. IEEE Amer. Control Conf., 2012, pp. 6322–6327.
    [27]
    J. Xu and H. Zhang, “Open-loop decentralized lq control problem with multiplicative noise,” IEEE Trans. Control. Netw. Syst., 2022.
    [28]
    H. Zhang, L. Li, J. Xu, and M. Fu, “Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise,” IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2599–2613, 2015. doi: 10.1109/TAC.2015.2411911
    [29]
    R. Ku and M. Athans, “Further results on the uncertainty threshold principle,” IEEE Trans. Autom. Control, vol. 22, no. 5, pp. 866–868, 1977. doi: 10.1109/TAC.1977.1101633
    [30]
    Y. Ma, T. Qin, and Y. Li, “Nonlinear extended state observer based super-twisting terminal sliding mode synchronous control for parallel drive systems,” IEEE/ASME Trans. Mechatron., 2023. DOI: 10.1109/TMECH.2023.3244755
    [31]
    A. El Bouhtouri, D. Hinrichsen, and A. J. Pritchard, “H -type control for discrete-time stochastic systems,” Int. J. Robust Nonlinear Control., vol. 9, no. 13, pp. 923–948, 1999. doi: 10.1002/(SICI)1099-1239(199911)9:13<923::AID-RNC444>3.0.CO;2-2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (288) PDF downloads(55) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return