A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Huang, Y. Liu, K. Kou, and W. Gui, “Multi-timescale distributed approach to generalized-Nash-equilibrium seeking in noncooperative nonconvex games,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 791–793, Mar. 2024. doi: 10.1109/JAS.2023.123909
Citation: B. Huang, Y. Liu, K. Kou, and W. Gui, “Multi-timescale distributed approach to generalized-Nash-equilibrium seeking in noncooperative nonconvex games,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 791–793, Mar. 2024. doi: 10.1109/JAS.2023.123909

Multi-Timescale Distributed Approach to Generalized-Nash-Equilibrium Seeking in Noncooperative Nonconvex Games

doi: 10.1109/JAS.2023.123909
More Information
  • loading
  • [1]
    M. Ye and G. Hu, “Distributed Nash equilibrium seeking by a consensus based approach,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4811–4818, 2017. doi: 10.1109/TAC.2017.2688452
    [2]
    Y. Zhu, W. Yu, G. Wen, and G. Chen, “Distributed Nash equilibrium seeking in an aggregative game on a directed graph,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2746–2753, 2021. doi: 10.1109/TAC.2020.3008113
    [3]
    X. Fang, G. Wen, J. Zhou, J. Lü, and G. Chen, “Distributed Nash equilibrium seeking for aggregative games with directed communication graphs,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 69, no. 8, pp. 3339–3352, 2022. doi: 10.1109/TCSI.2022.3168770
    [4]
    Y. Liu, Z. Xia, and W. Gui, “Multi-objective distributed optimization via a predefined-time multi-agent approach,” IEEE Trans. Autom. Control, vol. 68, no. 11, pp. 6998–7005, 2023. doi: 10.1109/TAC.2023.3244122
    [5]
    B. Huang, Y. Liu, L. Glielmo, and W. Gui, “Fixed-time distributed robust optimization for economic dispatch with event-triggered intermittent control,” Sci. China: Technol. Sci., vol. 66, no. 2, pp. 1385–1396, 2023. doi: 10.1007/s11431-022-2352-9
    [6]
    Z. Xia, Y. Liu, W. Lu, and W. Gui, “Matrix-valued distributed stochastic optimization with constraints,” Front. Inform. Tech. El., vol. 24, no. 9, pp. 1239–1252, 2023. doi: 10.1631/FITEE.2200381
    [7]
    M. Ye, Q.-L. Han, L. Ding, and S. Xu, “Distributed Nash equilibrium seeking in games with partial decision information: A survey,” Proc. IEEE, vol. 111, no. 2, pp. 140–157, 2023. doi: 10.1109/JPROC.2023.3234687
    [8]
    Z. Wang, F. Liu, Z. Ma, Y. Chen, M. Jia, W. Wei, and Q. Wu, “Distributed generalized Nash equilibrium seeking for energy sharing games in prosumers,” IEEE Trans. Power Systems, vol. 36, no. 5, pp. 3973–3986, 2021. doi: 10.1109/TPWRS.2021.3058675
    [9]
    K. Lu, G. Jing, and L. Wang, “Distributed algorithms for searching generalized Nash equilibrium of noncooperative games,” IEEE Trans. Cyber., vol. 49, no. 6, pp. 2362–2371, 2019. doi: 10.1109/TCYB.2018.2828118
    [10]
    C. Sun and G. Hu, “Continuous-time penalty methods for Nash equilibrium seeking of a nonsmooth generalized noncooperative game,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4895–4902, 2021. doi: 10.1109/TAC.2020.3040377
    [11]
    X. Fang, G. Wen, T. Huang, Z. Fu, and L. Hu, “Distributed Nash equilibrium seeking over markovian switching communication networks,” IEEE Trans. Cyber., vol. 52, no. 6, pp. 5343–5355, 2022. doi: 10.1109/TCYB.2020.3030824
    [12]
    K. Lu and Q. Zhu, “Nonsmooth continuous-time distributed algorithms for seeking generalized Nash equilibria of noncooperative games via digraphs,” IEEE Trans. Cyber., vol. 52, no. 7, pp. 6196–6206, 2022. doi: 10.1109/TCYB.2021.3049463
    [13]
    M. Ye, Q.-L. Han, L. Ding, and S. Xu, “Fully distributed Nash equilibrium seeking for high-order players with actuator limitations,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1434–1444, 2023.
    [14]
    M. Ye, Q.-L. Han, L. Ding, S. Xu, and G. Jia, “Distributed Nash equilibrium seeking strategies under quantized communication,” IEEE/CAA J. Autom.a Sinica, vol. 11, no. 1, pp. 103–112, 2024. doi: 10.1109/JAS.2022.105857
    [15]
    M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023. doi: 10.1109/JAS.2022.105428
    [16]
    S.-P. Han, “A globally convergent method for nonlinear programming,” J. Optimiz. Theory App., vol. 22, no. 3, pp. 297–309, 1977. doi: 10.1007/BF00932858
    [17]
    J. Wang and J. Wang, “Two-timescale multilayer recurrent neural networks for nonlinear programming,” IEEE Trans. Neural Networks and Learning Systems, vol. 33, no. 1, pp. 37–47, 2022. doi: 10.1109/TNNLS.2020.3027471
    [18]
    M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming: Theory and Algorithms. New York, UAS: John Wiley & Sons, 2013.
    [19]
    Y. Xia, “An extended projection neural network for constrained optimization,” Neural Comput., vol. 16, no. 4, pp. 863–883, 2004. doi: 10.1162/089976604322860730

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (246) PDF downloads(35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return