A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Lin, J. Cao, J. Lu, and L. Rutkowski, “Set stabilization of large-scale stochastic Boolean networks: A distributed control strategy,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 806–808, Mar. 2024. doi: 10.1109/JAS.2023.123903
Citation: L. Lin, J. Cao, J. Lu, and L. Rutkowski, “Set stabilization of large-scale stochastic Boolean networks: A distributed control strategy,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 806–808, Mar. 2024. doi: 10.1109/JAS.2023.123903

Set Stabilization of Large-Scale Stochastic Boolean Networks: A Distributed Control Strategy

doi: 10.1109/JAS.2023.123903
More Information
  • loading
  • [1]
    S. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic nets,” J. Theoretical Biology, vol. 22, no. 3, pp. 437–467, 1969. doi: 10.1016/0022-5193(69)90015-0
    [2]
    G. Zhao, Y. Wang, and H. Li, “A matrix approach to the modeling and analysis of networked evolutionary games with time delays,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 818–826, 2016.
    [3]
    L. Lin, J. Cao, S. Zhu, and P. Shi, “Synchronization analysis for stochastic networks through finite fields,” IEEE Trans. Autom. Control, vol. 67, no. 2, pp. 1016–1022, 2022. doi: 10.1109/TAC.2021.3081621
    [4]
    J. Lü, G. Wen, R. Lu, Y. Wang, and S. Zhang, “Networked knowledge and complex networks: An engineering view,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1366–1383, 2022. doi: 10.1109/JAS.2022.105737
    [5]
    M. Kabir, M. Hoque, B.-J. Koo, and S.-H. Yang, “Mathematical modelling of a context-aware system based on Boolean control networks for smart home,” in Proc. 18th IEEE Int. Symp. Consumer Electronics, 2014, pp. 1–2.
    [6]
    X. Li, D. Ho, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” Automatica, vol. 99, pp. 361–368, 2019. doi: 10.1016/j.automatica.2018.10.024
    [7]
    S. Zhu, J. Lu, Y. Lou, and Y. Liu, “Induced-equations-based stability analysis and stabilization of Markovian jump Boolean networks,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4820–4827, 2020.
    [8]
    X. Li, S. Song, and J. Wu, “Exponential stability of nonlinear systems with delayed impulses and applications,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4024–4034, 2019. doi: 10.1109/TAC.2019.2905271
    [9]
    R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, and T. P. Loughran, “Network model of survival signaling in large granular lymphocyte leukemia,” Proc. National Academy of Sciences, vol. 105, no. 42, pp. 16308–16313, 2008. doi: 10.1073/pnas.0806447105
    [10]
    D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. London, UK: Springer-Verlag, 2011.
    [11]
    S. Zhu, J. Lu, L. Sun, and J. Cao, “Distributed pinning set stabilization of large-scale Boolean networks,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1886–1893, 2023. doi: 10.1109/TAC.2022.3169178
    [12]
    S. Zhu, J. Lu, S.-I. Azuma, and W. Zheng, “Strong structural controllability of Boolean networks: Polynomial-time criteria, minimal node control, and distributed pinning strategies,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5461–5476, 2023. doi: 10.1109/TAC.2022.3226701
    [13]
    S. Zhu, L. Lin, J. Cao, J. Lam, and S.-i. Azuma, “Toward stabilizable Boolean networks: Minimal node control,” IEEE Trans. Autom. Control, vol. 69, no. 1, pp. 174–188, 2024. doi: 10.1109/TAC.2023.3269321
    [14]
    F. Li and L. Xie, “Set stabilization of probabilistic Boolean networks using pinning control,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 8, pp. 2555–2561, 2019. doi: 10.1109/TNNLS.2018.2881279
    [15]
    L. Wang, M. Fang, Z.-G. Wu, and J. Lu, “Necessary and sufficient conditions on pinning stabilization for stochastic Boolean networks,” IEEE Trans. Cyber., vol. 50, no. 10, pp. 4444–4453, 2019.
    [16]
    Y. Guo, P. Wang, W. Gui, and C. Yang, “Set stability and set stabilization of Boolean control networks based on invariant subsets,” Automatica, vol. 61, pp. 106–112, 2015. doi: 10.1016/j.automatica.2015.08.006
    [17]
    F. Robert, Discrete Iterations: A Metric Study. London, UK: Springer-Verlag, 2012.
    [18]
    J. Saez-Rodriguez, L. Simeoni, J. A. Lindquist, et al., “A logical model provides insights into T cell receptor signaling,” PLoS Computational Biology, vol. 3, no. 8, p. e163, 2007.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (298) PDF downloads(56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return