A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 1
Jan.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
M. Sun, J. Liu, L. Ren, and C. Sun, “Fixed-time consensus-based Nash equilibrium seeking,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 267–269, Jan. 2024. doi: 10.1109/JAS.2023.123900
Citation: M. Sun, J. Liu, L. Ren, and C. Sun, “Fixed-time consensus-based Nash equilibrium seeking,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 267–269, Jan. 2024. doi: 10.1109/JAS.2023.123900

Fixed-Time Consensus-Based Nash Equilibrium Seeking

doi: 10.1109/JAS.2023.123900
More Information
  • loading
  • [1]
    B. Gharesifard and J. Cortés, “Distributed convergence to Nash equilibria in two-network zero-sum games,” Automatica, vol. 49, no. 6, pp. 1683–1692, 2013. doi: 10.1016/j.automatica.2013.02.062
    [2]
    J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and potential games,” IEEE Trans. Syst.,Man,Cyber.,B, vol. 39, no. 6, pp. 1393–1407, 2009. doi: 10.1109/TSMCB.2009.2017273
    [3]
    B. Ning, Q.-L. Han, Z. Zuo, J. Jin, and J. Zheng, “Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1577–1590, 2018. doi: 10.1109/TCYB.2017.2708321
    [4]
    M. Ye and G. Hu, “Game design and analysis for price-based demand response: An aggregate game approach,” IEEE Trans. Cyber., vol. 47, no. 3, pp. 720–730, 2017. doi: 10.1109/TCYB.2016.2524452
    [5]
    X. Na and D. Cole, “Theoretical and experimental investigation of driver noncooperative-game steering control behavior,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 189–205, 2021. doi: 10.1109/JAS.2020.1003480
    [6]
    P. Frihauf, M. Krstic, and T. Basar, “Nash equilibrium seeking in noncooperative games,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1192–1207, 2012. doi: 10.1109/TAC.2011.2173412
    [7]
    F. Salehisadaghiani and L. Pavel, “Distributed Nash equilibrium seeking: A gossip-based algorithm,” Automatica, vol. 72, pp. 209–216, 2016. doi: 10.1016/j.automatica.2016.06.004
    [8]
    M. Ye and G. Hu, “Distributed Nash equilibrium seeking by a consensus based approach,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4811–4818, 2017. doi: 10.1109/TAC.2017.2688452
    [9]
    Z. Zuo and L. Tie, “Distributed robust finite-time nonlinear consensus protocols for multi-agent systems,” Int. J. Syst. Sci., vol. 47, no. 6, pp. 1366–1375, 2016. doi: 10.1080/00207721.2014.925608
    [10]
    L. Ding, Q.-L. Han, X. Ge, and X -M. Zhang, “An overview of recent advances in event-triggered consensus of multiagent systems,” IEEE Trans. Cyber., vol. 48, no. 4, pp. 1110–1123, 2018. doi: 10.1109/TCYB.2017.2771560
    [11]
    J. Liu, Y. Zhang, Y. Yu, and C. Sun, “Fixed-time event-triggered consensus for nonlinear multiagent systems without continuous communications,” IEEE Trans. Syst.,Man,Cyber.,Syst., vol. 49, no. 11, pp. 2221–2229, 2019. doi: 10.1109/TSMC.2018.2876334
    [12]
    J. Ni and P. Shi, “Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances,” IEEE Trans. Cyber., vol. 51, no. 4, pp. 1835–1848, 2021. doi: 10.1109/TCYB.2020.2967995
    [13]
    J. Liu, Y. Wu, M. Sun, and C. Sun, “Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 930–933, 2022. doi: 10.1109/JAS.2022.105503
    [14]
    B. Ning, Q.-L. Han, Z. Zuo, L. Ding, Q. Lu, and X. Ge, “Fixed-time and prescribed-time consensus control of multiagent systems and its applications: A survey of recent trends and methodologies,” IEEE Trans. Ind. Inf., vol. 19, no. 2, pp. 1121–1135, 2023. doi: 10.1109/TII.2022.3201589
    [15]
    D. Gadjov and L. Pavel, “A passivity-based approach to Nash equilibrium seeking over networks,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1077–1092, 2019. doi: 10.1109/TAC.2018.2833140
    [16]
    M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023. doi: 10.1109/JAS.2022.105428
    [17]
    M. Ye, Q.-L. Han, L. Ding, and S. Xu, “Fully distributed Nash equilibrium seeking for high-order players with actuator limitations,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1434–1444, 2023. doi: 10.1109/JAS.2022.105983
    [18]
    M. Ye and G. Hu, “Distributed Nash equilibrium seeking in multiagent games under switching communication topologies,” IEEE Trans. Cyber., vol. 48, no. 11, pp. 3208–3217, 2018. doi: 10.1109/TCYB.2017.2764141
    [19]
    X. Fang, J. Lü, and G. Wen, “Distributed finite-time Nash equilibrium seeking for non-cooperative games,” CSIAM Trans. Appl. Math., vol. 2, no. 1, pp. 162–174, 2021. doi: 10.4208/csiam-am.2020-0028
    [20]
    J. I. Poveda, M. Krstić, and T. Başar, “Fixed-time Nash equilibrium seeking in time-varying networks,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 1954–1969, 2023. doi: 10.1109/TAC.2022.3168527
    [21]
    Y. Zhao, Q. Tao, C. Xian, Z. Li, and Z. Duan, “Prescribed-time distributed Nash equilibrium seeking for noncooperation games,” Automatica, vol. 151, p. 110933, 2023. doi: 10.1016/j.automatica.2023.110933
    [22]
    J. Liu and P. Yi, “Predefined-time distributed Nash equilibrium seeking for noncooperative games with event-triggered communication,” IEEE Trans. Circuits and Syst. II,Exp. Briefs, vol. 70, no. 9, pp. 3434–3438, 2023. doi: 10.1109/TCSII.2023.3259483

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (202) PDF downloads(56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return