IEEE/CAA Journal of Automatica Sinica
Citation: | T. Zhang, J. Cao, and X. Li, “Lyapunov conditions for finite-time input-to-state stability of impulsive switched systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1057–1059, Apr. 2024. doi: 10.1109/JAS.2023.123888 |
[1] |
D. Liberzon, Switching in Systems and Control, vol. 190. Boston, USA: Springer, 2003.
|
[2] |
Z. Li, Y. Soh, and C. Wen, Switched and Impulsive Systems: Analysis, Design and Applications, vol. 313. Heidelberg, Germany: Springer Science & Business Media, 2005.
|
[3] |
S. Feng, J. Wang, and J. Zhao, “Stability and robust stability of switched positive linear systems with all modes unstable,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 167–176, 2017.
|
[4] |
H. Haimovich and J. L. Mancilla-Aguilar, “Nonrobustness of asymptotic stability of impulsive systems with inputs,” Automatica, vol. 122, p. 109238, 2020. doi: 10.1016/j.automatica.2020.109238
|
[5] |
G. Feng and J. Cao, “Stability analysis of impulsive switched singular systems,” IET Control Theory &Applications, vol. 9, no. 6, pp. 863–870, 2015.
|
[6] |
T. Zhang, J. Li, W. Xu, and X. Li, “Stability and $L_2$-gain analysis for impulsive switched systems,” Communi. Nonlinear Science and Numerical Simulation, vol. 78, p. 104854, 2019. doi: 10.1016/j.cnsns.2019.104854
|
[7] |
W. Ren and J. Xiong, “Stability analysis of stochastic impulsive switched systems with deterministic state-dependent impulses and switches,” SIAM J. Control and Optimization, vol. 59, no. 3, pp. 2068–2092, 2021. doi: 10.1137/20M1353460
|
[8] |
Y.-W. Wang, Z.-H. Zeng, X.-K. Liu, and Z.-W. Liu, “Input-to-state stability of switched linear systems with unstabilizable modes under DoS attacks,” Automatica, vol. 146, p. 110607, 2022. doi: 10.1016/j.automatica.2022.110607
|
[9] |
J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for input-to-state stability of impulsive systems,” Automatica, vol. 44, no. 11, pp. 2735–2744, 2008. doi: 10.1016/j.automatica.2008.03.021
|
[10] |
G. Chen and Y. Yang, “Relaxed conditions for the input-to-state stability of switched nonlinear time-varying systems,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4706–4712, 2016.
|
[11] |
L. Hua, H. Zhu, S. Zhong, K. Shi, and J. Cao, “Novel criteria on finite-time stability of impulsive stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1634–1636, 2023. doi: 10.1109/JAS.2023.123276
|
[12] |
Y. Liu, H. Li, R. Lu, Z. Zuo, and X. Li, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, 2022. doi: 10.1109/JAS.2022.105413
|
[13] |
Y. Shen and X. Xia, “Semi-global finite-time observers for nonlinear systems,” Automatica, vol. 44, no. 12, pp. 3152–3156, 2008. doi: 10.1016/j.automatica.2008.05.015
|
[14] |
T. Zhang, X. Li, and J. Cao, “Finite-time stability of impulsive switched systems,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5592–5599, 2023. doi: 10.1109/TAC.2022.3219294
|
[15] |
Y. Hong, Z.-P. Jiang, and G. Feng, “Finite-time input-to-state stability and applications to finite-time control design,” SIAM J. Control and Optimization, vol. 48, no. 7, pp. 4395–4418, 2010. doi: 10.1137/070712043
|
[16] |
F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, “Finite-time and fixed-time input-to-state stability: Explicit and implicit approaches,” Systems &Control Letters, vol. 144, p. 104775, 2020.
|
[17] |
X. He, X. Li, and S. Song, “Finite-time input-to-state stability of nonlinear impulsive systems,” Automatica, vol. 135, p. 109994, 2022. doi: 10.1016/j.automatica.2021.109994
|
[18] |
Z. Ai and G. Zong, “Finite-time stochastic input-to-state stability of impulsive switched stochastic nonlinear systems,” Applied Mathe. and Computation, vol. 245, pp. 462–473, 2014. doi: 10.1016/j.amc.2014.07.092
|