A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 1
Jan.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q. Zhao, L. Shu, K. Li, M. Ferrag, X. Liu, and Y. Li, “Security and privacy in solar insecticidal lamps Internet of things: Requirements and challenges,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 58–73, Jan. 2024. doi: 10.1109/JAS.2023.123870
Citation: Q. Zhao, L. Shu, K. Li, M. Ferrag, X. Liu, and Y. Li, “Security and privacy in solar insecticidal lamps Internet of things: Requirements and challenges,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 58–73, Jan. 2024. doi: 10.1109/JAS.2023.123870

Security and Privacy in Solar Insecticidal Lamps Internet of Things: Requirements and Challenges

doi: 10.1109/JAS.2023.123870
Funds:  This work was supported in part by the National Natural Science Foundation of China (62072248, 62072247), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)
More Information
  • Solar insecticidal lamps (SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things (IoT) has formed a new type of agricultural IoT, known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues. These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL, etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability, and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.

     

  • loading
  • [1]
    K. L. Li, L. Shu, K. Huang, Y. H. Sun, F. Yang, Y. Zhang, Z. Q. Huo, Y. F. Wang, X. Y. Wang, Q. L. Lu, and Y. C. Zhang, “Research and prospect of solar insecticidal lamps internet of things,” Smart Agric., vol. 1, no. 3, pp. 13–28, Jul. 2019.
    [2]
    X. Yang, L. Shu, K. Huang, K. L. Li, Z. Q. Huo, Y. F. Wang, X. Y. Wang, Q. L. Lu, and Y. C. Zhang, “Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps internet of things,” Smart Agric., vol. 2, no. 2, pp. 11–27, Jun. 2020.
    [3]
    X. Yang, L. Shu, J. Chen, M. A. Ferrag, J. Wu, E. Nurellari, and K. Huang, “A survey on smart agriculture: Development modes, technologies, and security and privacy challenges,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 273–302, Feb. 2021. doi: 10.1109/JAS.2020.1003536
    [4]
    K. Huang, L. Shu, K. L. Li, X. Yang, Y. Zhu, X. C. Wang, and Q. Su, “Design and prospect for anti-theft and anti-destruction of nodes in solar insecticidal lamps internet of things,” Smart Agric., vol. 3, no. 1, pp. 129–143, Mar. 2021.
    [5]
    S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the internet of things: A standardization perspective,” IEEE Internet Things J., vol. 1, no. 3, pp. 265–275, Jun. 2014. doi: 10.1109/JIOT.2014.2323395
    [6]
    M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu, “Authentication protocols for internet of things: A comprehensive survey,” Secur. Commun. Netw., vol. 2017, p. 6562953, Nov. 2017.
    [7]
    W. Stallings, Cryptography and Network Security. 4th ed. Upper Saddle River, USA: Pearson Education, 2006.
    [8]
    V. Kumar, R. K. Jha, and S. Jain, “NB-IoT security: A survey,” Wirel. Pers. Commun., vol. 113, no. 4, pp. 2661–2708, Aug. 2020. doi: 10.1007/s11277-020-07346-7
    [9]
    K. Demestichas, N. Peppes, and T. Alexakis, “Survey on security threats in agricultural IoT and smart farming,” Sensors, vol. 20, no. 22, p. 6458, Nov. 2020. doi: 10.3390/s20226458
    [10]
    A. R. de Araujo Zanella, E. da Silva, and L. C. P. Albini, “Security challenges to smart agriculture: Current state, key issues, and future directions,” Array, vol. 8, p. 100048, Dec. 2020. doi: 10.1016/j.array.2020.100048
    [11]
    F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of things security: A survey,” J. Netw. Comput. Appl., vol. 88, pp. 10–28, Jun. 2017. doi: 10.1016/j.jnca.2017.04.002
    [12]
    H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and H. Karimipour, “A survey on internet of things security: Requirements, challenges, and solutions,” Internet Things, vol. 14, p. 100129, Jun. 2021. doi: 10.1016/j.iot.2019.100129
    [13]
    O. Yousuf and R. N. Mir, “A survey on the internet of things security: State-of-art, architecture, issues and countermeasures,” Inf. Comput. Secur., vol. 27, no. 2, pp. 292–323, May 2019. doi: 10.1108/ICS-07-2018-0084
    [14]
    S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in internet of things: The road ahead,” Comput. Netw., vol. 76, pp. 146–164, Jan. 2015. doi: 10.1016/j.comnet.2014.11.008
    [15]
    D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things security: A top-down survey,” Comput. Netw., vol. 141, pp. 199–221, Aug. 2018. doi: 10.1016/j.comnet.2018.03.012
    [16]
    M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, “Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges,” IEEE Access, vol. 8, pp. 32031–32053, Feb. 2020. doi: 10.1109/ACCESS.2020.2973178
    [17]
    M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, “Security and privacy in smart farming: Challenges and opportunities,” IEEE Access, vol. 8, pp. 34564–34584, Feb. 2020. doi: 10.1109/ACCESS.2020.2975142
    [18]
    A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif, W. H. Alshoura, and H. Arshad, “The internet of things security: A survey encompassing unexplored areas and new insights,” Comput. Secur., vol. 112, p. 102494, Jan. 2022. doi: 10.1016/j.cose.2021.102494
    [19]
    J. Hou, L. Qu, and W. Shi, “A survey on internet of things security from data perspectives,” Comput. Netw., vol. 148, pp. 295–306, Jan. 2019. doi: 10.1016/j.comnet.2018.11.026
    [20]
    H. Lei, D. Wang, K.-H. Park, I. S. Ansari, J. Jiang, G. Pan, and M.-S. Alouini, “Safeguarding UAV IoT communication systems against randomly located eavesdroppers,” IEEE Internet Things J., vol. 7, no. 2, pp. 1230–1244, Feb. 2020. doi: 10.1109/JIOT.2019.2953903
    [21]
    C.-H. Liao, H.-H. Shuai, and L.-C. Wang, “Eavesdropping prevention for heterogeneous internet of things systems,” in Proc. 15th IEEE Annu. Consumer Communications & Networking Conf., Las Vegas, USA, 2018, pp. 1–2.
    [22]
    L. Guo, C. Zhang, J. Sun, and Y. Fang, “A privacy-preserving attribute-based authentication system for mobile health networks,” IEEE Trans. Mobile Comput., vol. 13, no. 9, pp. 1927–1941, Sept. 2014. doi: 10.1109/TMC.2013.84
    [23]
    K. Huang, K. Li, L. Shu, and X. Yang, “Demo abstract: High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things,” in Proc. IEEE Conf. Computer Communications Workshops, Toronto, Canada, 2020, pp. 1266–1267.
    [24]
    K. Huang, K. Li, L. Shu, X. Yang, T. Gordon, and X. Wang, “High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things,” IEEE Wirel. Commun., vol. 27, no. 6, pp. 140–145, Dec. 2020. doi: 10.1109/MWC.001.2000082
    [25]
    S. Kalra and S. K. Sood, “Secure authentication scheme for IoT and cloud servers,” Pervasive Mob. Comput., vol. 24, pp. 210–223, Dec. 2015. doi: 10.1016/j.pmcj.2015.08.001
    [26]
    H. Kim and E. A. Lee, “Authentication and authorization for the internet of things,” IT Prof., vol. 19, no. 5, pp. 27–33, Oct. 2017. doi: 10.1109/MITP.2017.3680960
    [27]
    A. Boghossian, S. Linsky, A. Brown, P. Mutschler, B. Ulicny, L. Barrett, G. Bethel, M. Matson, T. Strang, K. Ramsdell, and S. Koehler, “Threats to precision agriculture (2018 public-private analytic exchange program report),” 2018. [Online], Available: https://static1.squarespace.com/static/55e8e9ece4b09a2da6c9b923/t/5bce1e7ee2c48363bc5d728f/1540234885121/2018+CHS+Threats+to+Precision+Agriculture.pdf. Accessed on: Oct. 20, 2023.
    [28]
    M. M. Joe and B. Ramakrishnan, “Review of vehicular ad hoc network communication models including WVANET (web VANET) model and WVANET future research directions,” Wirel. Netw., vol. 22, no. 7, pp. 2369–2386, Oct. 2016. doi: 10.1007/s11276-015-1104-z
    [29]
    A. Ouaddah, I. Bouij-Pasquier, A. Abou Elkalam, and A. A. Ouahman, “Security analysis and proposal of new access control model in the internet of thing,” in Proc. Int. Conf. Electrical and Information Technologies, Marrakech, Morocco, 2015, pp. 30–35.
    [30]
    E. Moridi, M. Haghparast, M. Hosseinzadeh, and S. J. Jassbi, “Fault management frameworks in wireless sensor networks: A survey,” Comput. Commun., vol. 155, pp. 205–226, Apr. 2020. doi: 10.1016/j.comcom.2020.03.011
    [31]
    Y. Yang, H. Cai, Z. Wei, H. Lu, and K.-K. R. Choo, “Towards lightweight anonymous entity authentication for IoT applications,” in Proc. 21st Australasian Conf. Information Security and Privacy, Melbourne, Australia, 2016, pp. 265–280.
    [32]
    A. Alcaide, E. Palomar, J. Montero-Castillo, and A. Ribagorda, “Anonymous authentication for privacy-preserving IoT target-driven applications,” Comput. Secur., vol. 37, pp. 111–123, Sept. 2013. doi: 10.1016/j.cose.2013.05.007
    [33]
    Y. Zhou, T. Liu, F. Tang, and M. Tinashe, “An unlinkable authentication scheme for distributed IoT application,” IEEE Access, vol. 7, pp. 14757–14766, Jan. 2019. doi: 10.1109/ACCESS.2019.2893918
    [34]
    M. N. Aman, B. Sikdar, K. C. Chua, and A. Ali, “Low power data integrity in IoT systems,” IEEE Internet Things J., vol. 5, no. 4, pp. 3102–3113, Aug. 2018. doi: 10.1109/JIOT.2018.2833206
    [35]
    S. A. Chaudhry, M. S. Farash, N. Kumar, and M. H. Alsharif, “PFLUA-DIoT: A pairing free lightweight and unlinkable user access control scheme for distributed IoT environments,” IEEE Syst. J., vol. 16, no. 1, pp. 309–316, Mar. 2022. doi: 10.1109/JSYST.2020.3036425
    [36]
    S. Chatterjee and S. G. Samaddar, “A robust lightweight ECC-based three-way authentication scheme for IoT in cloud,” in Proc. Smart Computing Paradigms: New Progresses and Challenges, Singapore, Singapore, 2020, pp. 101–111.
    [37]
    M. Wazid, A. K. Das, V. Bhat K, and A. V. Vasilakos, “LAM-CIoT: Lightweight authentication mechanism in cloud-based IoT environment,” J. Netw. Comput. Appl., vol. 150, p. 102496, Jan. 2020. doi: 10.1016/j.jnca.2019.102496
    [38]
    N. Karmitsa, S. Taheri, A. Bagirov, and P. Makinen, “Missing value imputation via clusterwise linear regression,” IEEE Trans. Knowl. Data. Eng., vol. 34, no. 4, pp. 1889–1901, Apr. 2022.
    [39]
    L. Harn, C. Hsu, and Z. Xia, “Mix broadcast network with user untraceability for resource-constrained IoT,” IEEE Sens. Lett., vol. 5, no. 9, p. 6002004, Sept. 2021.
    [40]
    S. Bi, T. Hou, T. Wang, Y. Liu, Z. Lu, and Q. Pei, “DyWCP: Dynamic and lightweight data-channel coupling towards confidentiality in IoT security,” in Proc. 15th ACM Conf. Security and Privacy in Wireless and Mobile Networks, San Antonio, USA, 2022, pp. 222–232.
    [41]
    D. Hamouda, M. A. Ferrag, N. Benhamida, and H. Seridi, “PPSS: A privacy-preserving secure framework using blockchain-enabled federated deep learning for industrial IoTs,” Pervasive Mob. Comput., vol. 88, p. 101738, Jan. 2023. doi: 10.1016/j.pmcj.2022.101738
    [42]
    O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, K.-K. R. Choo, and M. Nafaa, “FELIDS: Federated learning-based intrusion detection system for agricultural internet of things,” J. Parallel Distrib. Comput., vol. 165, pp. 17–31, Jul. 2022. doi: 10.1016/j.jpdc.2022.03.003
    [43]
    O. Friha, M. A. Ferrag, M. Benbouzid, T. Berghout, B. Kantarci, and K.-K. R. Choo, “2DF-IDS: Decentralized and differentially private federated learning-based intrusion detection system for industrial IoT,” Comput. Secur., vol. 127, p. 103097, Apr. 2023. doi: 10.1016/j.cose.2023.103097
    [44]
    P. Gope and T. Hwang, “Untraceable sensor movement in distributed IoT infrastructure,” IEEE Sens. J., vol. 15, no. 9, pp. 5340–5348, Sept. 2015. doi: 10.1109/JSEN.2015.2441113
    [45]
    M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey of internet of things (IoT) authentication schemes,” Sensors, vol. 19, p. 5, Mar. 2019.
    [46]
    C. Schmitt, M. Noack, and B. Stiller, “TinyTO: Two-way authentication for constrained devices in the internet of things,” in Internet of Things, R. Buyya and A. V. Dastjerdi, Eds. Amsterdam, Netherlands: Elsevier, 2016, pp. 239–258.
    [47]
    L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig, “Authentication and authorization for constrained environments (ACE),” 2016. [Online], Available: https://www.ietf.org/proceedings/interim/2016/06/16/ace/slides/slides-interim-2016-ace-2-2.pdf. Accessed on: Oct. 20, 2023.
    [48]
    M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and R. Guizzetti, “OSCAR: Object security architecture for the internet of things,” Ad Hoc Netw., vol. 32, pp. 3–16, Sept. 2015. doi: 10.1016/j.adhoc.2014.12.005
    [49]
    Z. Shelby, K. Hartke, and C. Bormann. “The constrained application protocol (RFC 7252)”, 2014. [Online]. Available: https://www.rfceditor.org/info/rfc7252, Accessed on: Oct. 20, 2023.
    [50]
    Y. Tian, N. Zhang, Y.-H. Lin, X. F. Wang, B. Ur, X. Z. Guo, and P. Tague, “Smartauth: User-centered authorization for the internet of things,” in Proc. 26th USENIX Conf. Security Symp., Vancouver, Canada, 2017, pp. 361–378.
    [51]
    G. Duc and R. Keryell, “Improving virus protection with an efficient secure architecture with memory encryption, integrity and information leakage protection,” J. Comput. Virol., vol. 4, no. 2, pp. 101–113, May 2008. doi: 10.1007/s11416-007-0062-0
    [52]
    Y. Zhang, D. Gu, F. Hou, M. Zeng, and T. Cheng, “Architecture support for memory confidentiality and integrity in embedded systems,” Int. J. Distrib. Sens. Netw., vol. 5, no. 1, p. 96, Jan. 2009. doi: 10.1080/15501320802575161
    [53]
    G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A review of lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp. 141–184, Jun. 2018. doi: 10.1007/s13389-017-0160-y
    [54]
    B. J. Mohd, T. Hayajneh, and A. V. Vasilakos, “A survey on lightweight block ciphers for low-resource devices: Comparative study and open issues,” J. Netw. Comput. Appl., vol. 58, pp. 73–93, Dec. 2015. doi: 10.1016/j.jnca.2015.09.001
    [55]
    T. Bose, S. Bandyopadhyay, A. Ukil, A. Bhattacharyya, and A. Pal, “Why not keep your personal data secure yet private in IoT?: Our lightweight approach,” in Proc. IEEE Tenth Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing, Singapore, Singapore, 2015, pp. 1–6.
    [56]
    S. Rinne, T. Eisenbarth, and C. Paar, “Performance analysis of contemporary light-weight block ciphers on 8-bit microcontrollers,” in Proc. ECRYPT Workshop SPEED-Software Performance Enhancement for Encryption and Decryption, 2007, pp. 33–43.
    [57]
    S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “Internet of things: Security in the keys,” in Proc. 12th ACM Symp. QoS and Security for Wireless and Mobile Networks, Malta, 2016, pp. 129–133.
    [58]
    G. Dini and L. Lopriore, “Key propagation in wireless sensor networks,” Comput. Electr. Eng., vol. 41, pp. 426–433, Jan. 2015. doi: 10.1016/j.compeleceng.2014.02.008
    [59]
    R. Di Pietro, L. V. Mancini, and S. Jajodia, “Providing secrecy in key management protocols for large wireless sensors networks,” Ad Hoc Netw., vol. 1, no. 4, pp. 455–468, Nov. 2003. doi: 10.1016/S1570-8705(03)00046-5
    [60]
    D. He, J. Bu, S. Zhu, S. Chan, and C. Chen, “Distributed access control with privacy support in wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 10, no. 10, pp. 3472–3481, Oct. 2011. doi: 10.1109/TWC.2011.072511.102283
    [61]
    W. Chen, “An IBE-based security scheme on internet of things,” in Proc. IEEE 2nd Int. Conf. Cloud Computing and Intelligence Systems, Hangzhou, China, 2012, pp. 1046–1049.
    [62]
    L. Touati, Y. Challal, and A. Bouabdallah, “C-CP-ABE: Cooperative ciphertext policy attribute-based encryption for the internet of things,” in Proc. Int. Conf. Advanced Networking Distributed Systems and Applications, Bejaia, Algeria, 2014, pp. 64–69.
    [63]
    D. D. Downs, J. R. Rub, K. C. Kung, and C. S. Jordan, “Issues in discretionary access control,” in Proc. IEEE Symp. Security and Privacy, Oakland, USA, 1985, pp. 208–208.
    [64]
    E. Bertino, S. Jajodiat, and P. Samarati, “Enforcing mandatory access control in object bases,” in Proc. Conf. Workshop on Security for Object-Oriented Systems, Washington, USA, 1994, pp. 96-116.
    [65]
    D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Proposed NIST standard for role-based access control,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001. doi: 10.1145/501978.501980
    [66]
    E. Yuan and J. Tong, “Attributed based access control (ABAC) for web services,” in Proc. IEEE Int. Conf. Web Services, Orlando, USA, 2005, p. 569.
    [67]
    J. Park and R. Sandhu, “The UCONABC usage control model,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, Feb. 2004. doi: 10.1145/984334.984339
    [68]
    S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security approach to manage access control in the internet of things,” Math. Comput. Modell., vol. 58, pp. 5–6, Sept. 2013.
    [69]
    A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin, “Organization based access control,” in Proc. IEEE 4th Int. Workshop on Policies for Distributed Systems and Networks, Lake Como, Italy, 2003, pp. 120–131.
    [70]
    R. Xu, Y. Chen, E. Blasch, and G. Chen, “A federated capability-based access control mechanism for internet of things (IoTs),” in Proc. SPIE 10641, Sensors and Systems for Space Applications XI, Orlando, USA, 2018, pp. 291–307.
    [71]
    E. Barka, S. S. Mathew, and Y. Atif, “Securing the web of things with role-based access control,” in Proc. 1st Int. Conf. Codes, Cryptology, and Information Security, Rabat, Morocco, 2015, pp. 14–26.
    [72]
    D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible access control markup language (XACML) and next generation access control (NGAC),” in Proc. ACM Int. Workshop on Attribute Based Access Control, New Orleans, USA, 2016, pp. 13–24.
    [73]
    W. Denniss and J. Bradley, “Oauth 2.0 for native apps,” RFC, RFC 8252, 2017.
    [74]
    D. Rivera, L. Cruz-Piris, G. Lopez-Civera, E. de la Hoz, and I. Marsa-Maestre, “Applying an unified access control for IoT-based intelligent agent systems,” in Proc. IEEE 8th Int. Conf. service-Oriented Computing and Applications, Rome, Italy, 2015, pp. 247–251.
    [75]
    G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6 packets over IEEE 802.15.4 networks,” RFC, RFC 4944, 2007.
    [76]
    L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for the internet-of-things,” in Proc. IEEE 14th Int. Symp. “A World of Wireless, Mobile and Multimedia Networks”, Madrid, Spain, 2013, pp. 1–6.
    [77]
    J. Bae, M. Lee, and C. Shin, “A data-based fault-detection model for wireless sensor networks,” Sustainability, vol. 11, no. 21, p. 6171, Nov. 2019. doi: 10.3390/su11216171
    [78]
    S. Si, J. Wang, C. Yu, and H. Zhao, “Energy-efficient and fault-tolerant evolution models based on link prediction for large-scale wireless sensor networks,” IEEE Access, vol. 6, pp. 73341–73356, Nov. 2018. doi: 10.1109/ACCESS.2018.2882389
    [79]
    G. Chhabra, V. Vashisht, and J. Ranjan, “Missing value imputation using hybrid k-means and association rules,” in Proc. Int. Conf. Advances in Computing, Communication Control and Networking, Greater Noida, India, 2018, pp. 501–509.
    [80]
    Z. Li, H. Zheng, and X. Feng, “3D convolutional generative adversarial networks for missing traffic data completion,” in Proc. 10th Int. Conf. Wireless Communications and Signal Processing, Hangzhou, China, 2018, pp. 1–6.
    [81]
    Y. Maleh, A. Ezzati, and M. Belaissaoui, “DoS attacks analysis and improvement in DTLS protocol for internet of things,” in Proc. Int. Conf. Big Data and Advanced Wireless Technologies, Blagoevgrad, Bulgaria, 2016, p. 54.
    [82]
    R. Paudel, T. Muncy, and W. Eberle, “Detecting DoS attack in smart home IoT devices using a graph-based approach,” in Proc. IEEE Int. Conf. Big Data, Los Angeles, USA, 2019, pp. 5249–5258.
    [83]
    F. M. de Almeida, A. de RL Ribeiro, E. D. Moreno, and C. A. Montesco, “Performance evaluation of an artificial neural network multilayer perceptron with limited weights for detecting denial of service attack on internet of things,” in Proc. 12th Advanced Int. Conf. Telecommunications, Valencia, Spain, 2016, pp. 82–87.
    [84]
    G. Zhang, L. Kou, L. Zhang, C. Liu, Q. Da, and J. Sun, “A new digital watermarking method for data integrity protection in the perception layer of IoT,” Secur. Commun. Netw., vol. 2017, p. 3126010, Oct. 2017.
    [85]
    T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-flow attestation for embedded systems software,” in Proc. ACM SIGSAC Conf. Computer and Commun. Security, Vienna, Austria, 2016, pp. 743–754.
    [86]
    P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, “RAID: High-performance, reliable secondary storage,” ACM Comput. Surv., vol. 26, no. 2, pp. 145–185, Jun. 1994. doi: 10.1145/176979.176981
    [87]
    S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3FS: An in-kernel integrity checker and intrusion detection file system,” in Proc. 18th USENIX Conf. System Administration, Atlanta, USA, 2004, pp. 67–78.
    [88]
    G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data possession at untrusted stores,” in Proc. 14th ACM Conf. Computer and Commun. Security, Alexandria, USA, 2007, pp. 598–609.
    [89]
    J. Gray, “The transaction concept: Virtues and limitations,” in Proc. 7th Int. Conf. Very Large Data Bases, Cannes, France, 1981, pp. 144–154.
    [90]
    H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. 14th Int. Conf. Theory and Application of Cryptology and Infor. Security, Melbourne, Australia, 2008, pp. 90–107.
    [91]
    A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large files,” in Proc. 14th ACM Conf. Computer and Commun. Security, Alexandria, USA, 2007, pp. 584–597.
    [92]
    G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable data possession,” in Proc. 4th Int. Conf. Security and Privacy in Commun. Netowrks, Istanbul, Turkey, 2008, p. 9.
    [93]
    Y. Zhang, J. Ni, X. Tao, Y. Wang, and Y. Yu, “Provable multiple replication data possession with full dynamics for secure cloud storage,” Concurr. Comput., vol. 28, no. 4, pp. 1161–1173, Mar. 2016. doi: 10.1002/cpe.3573
    [94]
    P. Lv, L. Wang, H. Zhu, W. Deng, and L. Gu, “An IoT-oriented privacypreserving publish/subscribe model over blockchains,” IEEE Access, vol. 7, pp. 41309–41314, Mar. 2019. doi: 10.1109/ACCESS.2019.2907599
    [95]
    M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of trust: A decentralized blockchain-based authentication system for IoT,” Comput. Secur., vol. 78, pp. 126–142, Sept. 2018. doi: 10.1016/j.cose.2018.06.004
    [96]
    L. Zhou, L. Wang, T. Ai, and Y. Sun, “BeeKeeper 2.0: Confidential blockchain-enabled IoT system with fully homomorphic computation,” Sensors, vol. 18, no. 11, p. 3785, Nov. 2018. doi: 10.3390/s18113785
    [97]
    A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “FairAccess: A new blockchain-based access control framework for the internet of things,” Secur. Commun. Netw., vol. 9, no. 18, pp. 5943–5964, Dec. 2016. doi: 10.1002/sec.1748
    [98]
    M. Chen, X. Tang, J. Cheng, N. Xiong, J. Li, and D. Fan, “A DDoS attack defense method based on blockchain for IoTs devices,” in Proc. 6th Int. Conf. Artificial Intelligence and Security, Hohhot, China, 2020, pp. 685–694.
    [99]
    B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data integrity service framework for IoT data,” in Proc. IEEE Int. Conf. Web Services, Honolulu, USA, 2017, pp. 468–475.
    [100]
    Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities: A survey,” Int. J. Web Grid Serv., vol. 14, no. 4, pp. 352–375, Oct. 2018. doi: 10.1504/IJWGS.2018.095647
    [101]
    D. Minoli and B. Occhiogrosso, “Blockchain mechanisms for IoT security,” Internet Things, vol. 1-2, pp. 1–13, Sept. 2018. doi: 10.1016/j.iot.2018.05.002
    [102]
    M. Samaniego, U. Jamsrandorj, and R. Deters, “Blockchain as a service for IoT,” in Proc. IEEE Int. Conf. Internet of Things and IEEE Green Computing and Commun. and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, Chengdu, China, 2016, pp. 433–436.
    [103]
    W. Ding and H. Hu, “On the safety of IoT device physical interaction control,” in Proc. ACM SIGSAC Conf. Computer and Commun. Security, Toronto, Canada, 2018, pp. 832–846.
    [104]
    L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques based on machine learning: How do IoT devices use AI to enhance security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41–49, Sept. 2018. doi: 10.1109/MSP.2018.2825478
    [105]
    H. Wu, H. Han, X. Wang, and S. Sun, “Research on artificial intelligence enhancing internet of things security: A survey,” IEEE Access, vol. 8, pp. 153 826–153 848, Aug. 2020. doi: 10.1109/ACCESS.2020.3018170

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (481) PDF downloads(75) Cited by()

    Highlights

    • We divide the SIL-IoT security requirements into six categories, namely privacy, authentication, confidentiality, access control, availability, and integrity
    • we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions
    • Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return