A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
W. Wu, D. Wu, Y. Zhang, S. Chen, and W. Zhang, “Safety-critical trajectory tracking for mobile robots with guaranteed performance,” IEEE/CAA J. Autom. Sinica.. doi: 10.1109/JAS.2023.123864
Citation: W. Wu, D. Wu, Y. Zhang, S. Chen, and W. Zhang, “Safety-critical trajectory tracking for mobile robots with guaranteed performance,” IEEE/CAA J. Autom. Sinica.. doi: 10.1109/JAS.2023.123864

Safety-Critical Trajectory Tracking for Mobile Robots With Guaranteed Performance

doi: 10.1109/JAS.2023.123864
More Information
  • loading
  • [1]
    J. Wang, J. Wang, and Q.-L. Han, “Receding-horizon trajectory planning for under-actuated autonomous vehicles based on collaborative neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1909–1923, 2022. doi: 10.1109/JAS.2022.105524
    [2]
    Z. Peng, J. Wang, D. Wang, and Q.-L. Han, “An overview of recent advances in coordinated control of multiple autonomous surface vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 732–745, 2021. doi: 10.1109/TII.2020.3004343
    [3]
    T. Liu and Z.-P. Jiang, “Distributed formation control of nonholonomic mobile robots without global position measurements,” Automatica, vol. 49, no. 2, pp. 592–600, 2013. doi: 10.1016/j.automatica.2012.11.031
    [4]
    Z. Li, C. Yang, C.-Y. Su, J. Deng, and W. Zhang, “Vision-based model predictive control for steering of a nonholonomic mobile robot,” IEEE Trans. Control Syst. Technol., vol. 24, no. 2, pp. 553–564, 2015.
    [5]
    X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 990–1004, 2021.
    [6]
    C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2090–2099, 2008. doi: 10.1109/TAC.2008.929402
    [7]
    M. Chen, “Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3359–3368, 2016.
    [8]
    D. Fu, J. Huang, and H. Yin, “Controlling an uncertain mobile robot with prescribed performance,” Nonlinear Dyn., vol. 106, no. 3, pp. 2347–2362, 2021. doi: 10.1007/s11071-021-06899-x
    [9]
    W. Wu, Y. Zhang, W. Zhang, and W. Xie, “Distributed finite-time performance-prescribed time-varying formation control of autonomous surface vehicles with saturated inputs,” Ocean Eng., vol. 266, p. 112866, 2022. doi: 10.1016/j.oceaneng.2022.112866
    [10]
    K. Lu, S.-L. Dai, and X. Jin, “Fixed-time rigidity-based formation maneuvering for nonholonomic multirobot systems with prescribed performance,” IEEE Trans. Cybern., 2022. DOI: 10.1109/TCYB.2022.3226297
    [11]
    S. He, M. Wang, S. Dai, and F. Luo, “Leader-follower formation control of USVs with prescribed performance and collision avoidance,” IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 572–581, 2019. doi: 10.1109/TII.2018.2839739
    [12]
    S.-L. Dai, K. Lu, and X. Jin, “Fixed-time formation control of unicycle-type mobile robots with visibility and performance constraints,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12 615–12 625, 2020.
    [13]
    A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2016.
    [14]
    L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 661–674, 2017. doi: 10.1109/TRO.2017.2659727
    [15]
    S. Gao, Z. Peng, H. Wang, L. Liu, and D. Wang, “Safety-critical model-free control for multi-target tracking of USVs with collision avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1323–1326, 2022. doi: 10.1109/JAS.2022.105707
    [16]
    N. Gu, D. Wang, Z. Peng, and J. Wang, “Safety-critical containment maneuvering of underactuated autonomous surface vehicles based on neurodynamic optimization with control barrier functions,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 6, pp. 2882–2895, 2023. doi: 10.1109/TNNLS.2021.3110014
    [17]
    W. Wu, Y. Zhang, W. Zhang, and W. Xie, “Output-feedback finite-time safety-critical coordinated control of path-guided marine surface vessels based on neurodynamic optimization,” IEEE Trans. Syst. Man,Cybern.,Syst., vol. 53, no. 3, pp. 1788–1800, 2023. doi: 10.1109/TSMC.2022.3205637
    [18]
    W. Wu, Z. Peng, L. Liu, and D. Wang, “A general safety-certified cooperative control architecture for interconnected intelligent surface vehicles with applications to vessel train,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 627–637, 2022. doi: 10.1109/TIV.2022.3168974
    [19]
    N. Gu, Z. Peng, D. Wang, and F. Zhang, “Path-guided containment maneuvering of mobile robots: Theory and experiments,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7178–7187, 2020.
    [20]
    S.-L. Dai, S. He, M. Wang, and C. Yuan, “Adaptive neural control of underactuated surface vessels with prescribed performance guarantees,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3686–3698, 2018.
    [21]
    W. Wu, Z. Peng, D. Wang, L. Liu, and Q.-L. Han, “Network-based line-of-sight path tracking of underactuated unmanned surface vehicles with experiment results,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 10937–10947, 2022. doi: 10.1109/TCYB.2021.3074396
    [22]
    R. Ji, D. Li, J. Ma, and S. S. Ge, “Saturation-tolerant prescribed control of mimo systems with unknown control directions,” IEEE Trans. Fuzzy Syst., vol. 30, no. 12, pp. 5116–5127, 2022. doi: 10.1109/TFUZZ.2022.3166244
    [23]
    L. Liu, Y. Xu, Z. Huang, H. Wang, and A. Wang, “Safe cooperative path following with relative-angle-based collision avoidance for multiple underactuated autonomous surface vehicles,” Ocean Eng., vol. 258, p. 111670, 2022. doi: 10.1016/j.oceaneng.2022.111670
    [24]
    H. K. Khalil, “Nonlinear systems third edition,” Patience Hall, vol. 115, 2002.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (21) PDF downloads(15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return