IEEE/CAA Journal of Automatica Sinica
Citation: | G.-P. Liu, “Control strategies for digital twin systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 170–180, Jan. 2024. doi: 10.1109/JAS.2023.123834 |
[1] |
A. Redelinghuys, A. Basson, and K. Kruger, “A six-layer architecture for the digital twin: A manufacturing case study implementation,” J. Intelligent Manufacturing, vol. 31, no. 6, pp. 1383–1402, 2020. doi: 10.1007/s10845-019-01516-6
|
[2] |
M. W. Grieves, “Product lifecycle management: The new paradigm for enterprises,” Int. J. Product Development, vol. 2, no. 1–2, pp. 71–84, 2005.
|
[3] |
Y. H. Kim, C. M. Kim, Y. H. Han, Y. S. Jeong, and D. S. Park, “An efficient strategy of nonuniform sensor deployment in cyber physical systems,” The J. Supercomputing, vol. 66, no. 1, pp. 70–80, 2013. doi: 10.1007/s11227-013-0977-9
|
[4] |
E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood, “Reengineering aircraft structural life prediction using a digital twin,” Int. J. Aerospace Engineering, vol. 2011, p. 154798, 2011.
|
[5] |
E. Glaessgen and D. Stargel, “The digital twin paradigm for future NASA and U.S. Air Force vehicles,” in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 2012, pp. 1818−1832.
|
[6] |
R. Soni, M. Bhatia, and T. Singh, “Digital twin: Intersection of mind and machine,” Int. J. Computational Intelligence and IoT, vol. 2, no. 3, pp. 667–670, 2019.
|
[7] |
S. Haag and R. Anderl, “Digital twin-proof of concept,” Manufacturing Letters, pp. 64–66, 2018.
|
[8] |
P. D. U. Coronado, R. Lynn, W. Louhichi, M. Parto, E. Wescoat, and T. Kurfess, “Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system,” J. Manufacturing Systems, vol. 48, pp. 25–33, 2018. doi: 10.1016/j.jmsy.2018.02.002
|
[9] |
Y. Fang, C. Peng, P. Lou, Z. Zhou, J. Hu, and J. Yan, “Digital-twin based job shop scheduling towards smart manufacturing,” IEEE Trans. Industrial Informatics, vol. 15, no. 2, pp. 6425–6435, 2019. doi: 10.1109/TII.2019.2938572
|
[10] |
I. M. Cavalcante, E. M. Frazzon, F. A. Forcellini, and D. Ivanov, “A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing,” Int. J. Information Management, vol. 49, pp. 86–97, 2019. doi: 10.1016/j.ijinfomgt.2019.03.004
|
[11] |
A. El Saddik, “Digital twins: The convergence of multimedia technologies,” IEEE MultiMedia, vol. 25, no. 2, pp. 87–92, 2018. doi: 10.1109/MMUL.2018.023121167
|
[12] |
D. Smith and S. Singh, “Approaches to multisensor data fusion in target tracking: A survey,” IEEE Trans. Knowledge and Data Engineering, vol. 18, no. 12, pp. 1696–1710, 2006. doi: 10.1109/TKDE.2006.183
|
[13] |
Y. He, J. Guo, and X. Zheng, “From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things,” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 120–129, 2018. doi: 10.1109/MSP.2018.2842228
|
[14] |
B. Yi, X. Li, and Y. Yang, “Heterogeneous model integration of complex mechanical parts based on semantic feature fusion,” Engineering Computers, vol. 33, no. 4, pp. 797–805, 2017. doi: 10.1007/s00366-016-0498-2
|
[15] |
G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola, “Digital twin data modeling with AutomationML and a communication methodology for data exchange,” IFAC-PapersOnLine, vol. 49, no. 30, pp. 12–17, 2016. doi: 10.1016/j.ifacol.2016.11.115
|
[16] |
B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital twin for design and production engineering,” CIRP Annals, vol. 66, no. 1, pp. 141–144, 2017. doi: 10.1016/j.cirp.2017.04.040
|
[17] |
F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry: State-of-the-art,” IEEE Trans. Industrial Informatics, vol. 15, no. 4, pp. 2405–2415, 2019. doi: 10.1109/TII.2018.2873186
|
[18] |
K. Zhang, T. Qu, D. Zhou, H. Jiang, Y. Lin, P. Li, H. Guo, Y. Liu, C. Li, and G. Huang, “Digital twin-based opti-state control method for a synchronized production operation system,” Robotics and Computer-Integrated Manufacturing, vol. 63, p. 101892, 2020.
|
[19] |
L. Chang, L. Zhang, C. Fu, and Y. Chen, “Transparent digital twin for output control using belief rule base,” IEEE Trans. Cyber., vol. 52, no. 10, pp. 10364–10378, 2022. doi: 10.1109/TCYB.2021.3063285
|
[20] |
A. McClellan, J. Lorenzetti, M. Pavone, and C. Farhat, “A physics-based digital twin for model predictive control of autonomous unmanned aerial vehicle landing,” Philosophical Trans. the Royal Society A-Mathematical Physical and Engineering Sciences, vol. 380, p. 2229, 2022.
|
[21] |
X. Zhu and Y. Ji, “A digital twin-driven method for online quality control in process industry,” Int. J. Advanced Manufacturing Technology, vol. 119, no. 5−6, pp. 3045–3064, 2022. doi: 10.1007/s00170-021-08369-5
|
[22] |
Z. Lei, H. Zhou, W. Hu, G. Liu, S. Guan, and X. Feng, “Towards a web-based digital twin thermal power plant,” IEEE Trans. Industrial Informatics, vol. 18, no. 3, pp. 1716–1725, 2022. doi: 10.1109/TII.2021.3086149
|
[23] |
G. Liu and S. Daley, “Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system,” Control Engineering Practice, vol. 7, pp. 821–830, 1999. doi: 10.1016/S0967-0661(99)00047-7
|
[24] |
G. Liu and S. Daley, “Optimal-tuning nonlinear PID control for hydraulic systems,” Control Engineering Practice, vol. 8, no. 9, pp. 1045–1053, 2000. doi: 10.1016/S0967-0661(00)00042-3
|
[25] |
Q. Wei, H. Li, and F. Wang, “Parallel control for continuous-time linear systems: A case study,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 919–928, 2020. doi: 10.1109/JAS.2020.1003216
|
[26] |
J. Yang, X. Wang, and Y. Zhao, “Parallel manufacturing for industrial metaverses: A new paradigm in smart manufacturing,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2063–2070, 2022. doi: 10.1109/JAS.2022.106097
|
[27] |
L. Merkle, A. S. Segura, J. T. Grummel, and M. Lienkamp, “Architecture of a digital twin for enabling digital services for battery systems,” in Proc. IEEE Int. Conf. Industrial Cyber Physical Systems, 2019, pp. 155−160.
|
[28] |
T. Defraeye, G. Tagliavini, W. Wu, et al., “Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains,” Resources,Conservation and Recycling, vol. 149, pp. 778–794, 2019. doi: 10.1016/j.resconrec.2019.06.002
|
[29] |
A. Dalstam, M. Engberg, D. Nafors, B. Johansson, and A. Sundblom, “A stepwise implementation of the virtual factory in manufacturing industry,” in Proc. Winter Simulation Conf., 2018, pp. 3229−3240.
|
[30] |
F. Tao and M. Zhang, “Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing,” IEEE Access, vol. 5, pp. 20418–20427, 2017. doi: 10.1109/ACCESS.2017.2756069
|
[31] |
N. Nikolakis, K. Alexopoulos, E. Xanthakis, and G. Chryssolouris, “The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor,” Int. J. Computer Integrated Manufacturing, vol. 32, no. 1, pp. 1–12, 2019. doi: 10.1080/0951192X.2018.1529430
|
[32] |
K. Ding, F. Chan, X. Zhang, G. Zhou, and F. Zhang, “Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors, ” Int. J. Production Research, vol. 57, no. 20, pp. 6315−6334. 2019.
|
[33] |
R. Soderberg, K. Wormefjord, J. S. Carlson, and L. Lindkvist, “Toward a digital twin for real-time geometry assurance in individualized production,” CIRP Annals, vol. 66, no. 1, pp. 137–140, 2017. doi: 10.1016/j.cirp.2017.04.038
|
[34] |
Q. Wang, W. Jiao, P. Wang, and Y. Zhang, “Digital twin for human-robot interactive welding and welder behavior analysis,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 334–343, 2021. doi: 10.1109/JAS.2020.1003518
|
[35] |
Y. Wang, Y. Tian, J. Wang, Y. Cao, S. Li, and B. Tian, “Integrated inspection of QoM, QoP, and QoS for AOI industries in metaverses,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2071–2078, 2022. doi: 10.1109/JAS.2022.106091
|
[36] |
G. Liu and S. Daley, “Optimal-tuning PID control for industrial systems,” Control Engineering Practice, vol. 9, no. 11, pp. 1185–1194, 2001. doi: 10.1016/S0967-0661(01)00064-8
|
[37] |
G. Liu, Nonlinear Identification and Control: A Neural Network Approach, London, UK: Springer-Verlag Ltd., 2001.
|
[38] |
G. Liu, “Tracking control of multi-agent systems using a networked predictive PID tracking scheme,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 216–225, 2023. doi: 10.1109/JAS.2023.123030
|
[39] |
G. Liu, J. Yang, and J. Whidborne, Multiobjective Optimisation and Control, Baldock, UK: Research Studies Press Ltd., 2003.
|
[40] |
Z. Wang, P. Li, R. Lu, and C. Wang, Performance Analysis of Multiple Time-Delay Discrete Systems, Beijing, China: Science and Technology Press, 2022.
|
[41] |
G. Liu, “Coordination of networked nonlinear multi-agents using a high-order fully actuated predictive control strategy,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 615–623, 2022. doi: 10.1109/JAS.2022.105449
|