A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Liu, Z. Zhang, Z. Lei, M. Omura, R.-L. Wang, and S. Gao, “Dendritic deep learning for medical segmentation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 803–805, Mar. 2024. doi: 10.1109/JAS.2023.123813
Citation: Z. Liu, Z. Zhang, Z. Lei, M. Omura, R.-L. Wang, and S. Gao, “Dendritic deep learning for medical segmentation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 803–805, Mar. 2024. doi: 10.1109/JAS.2023.123813

Dendritic Deep Learning for Medical Segmentation

doi: 10.1109/JAS.2023.123813
More Information
  • loading
  • [1]
    S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523–3542, 2022.
    [2]
    J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
    [3]
    O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 234–241.
    [4]
    V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. doi: 10.1109/TPAMI.2016.2644615
    [5]
    N. Abraham and N. M. Khan, “A novel focal tversky loss function with improved attention U-Net for lesion segmentation,” in Proc. IEEE 16th Int. Symp. Biomedical Imaging, 2019, pp. 683–687.
    [6]
    G. Chen, Y. Dai, and J. Zhang, “RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation,” Engineering Applications of Artificial Intelligence, vol. 117, p. 105601, 2023. doi: 10.1016/j.engappai.2022.105601
    [7]
    M. E. Larkum, “Are dendrites conceptually useful?” Neuroscience, vol. 489, pp. 4–14, 2022.
    [8]
    S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, 2019. doi: 10.1109/TNNLS.2018.2846646
    [9]
    S. Gao, M. Zhou, Z. Wang, D. Sugiyama, J. Cheng, J. Wang, and Y. Todo, “Fully complex-valued dendritic neuron model,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 4, pp. 2105–2118, 2023. doi: 10.1109/TNNLS.2021.3105901
    [10]
    X. Ning, W. Tian, Z. Yu, W. Li, X. Bai, and Y. Wang, “HCFNN: Highorder coverage function neural network for image classification,” Pattern Recognition, vol. 131, p. 108873, 2022. doi: 10.1016/j.patcog.2022.108873
    [11]
    S. Jin, S. Yu, J. Peng, H. Wang, and Y. Zhao, “A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning,” Scientific Reports, vol. 13, no. 1, p. 6762, 2023. doi: 10.1038/s41598-023-33357-y

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (485) PDF downloads(81) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return