A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 1
Jan.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Qu, Z. Wang, B. Shen, H. Dong, and  H. Liu,  “Anomaly-resistant decentralized state estimation under minimum error entropy with fiducial points for wide-area power systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 74–87, Jan. 2024. doi: 10.1109/JAS.2023.123795
Citation: B. Qu, Z. Wang, B. Shen, H. Dong, and  H. Liu,  “Anomaly-resistant decentralized state estimation under minimum error entropy with fiducial points for wide-area power systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 74–87, Jan. 2024. doi: 10.1109/JAS.2023.123795

Anomaly-Resistant Decentralized State Estimation Under Minimum Error Entropy With Fiducial Points for Wide-Area Power Systems

doi: 10.1109/JAS.2023.123795
Funds:  This work was supported in part by the National Natural Science Foundation of China (61933007, U21A2019, 62273005, 62273088, 62303301), the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100), the Hainan Province Science and Technology Special Fund of China (ZDYF2022SHFZ105), the Natural Science Foundation of Anhui Province of China (2108085MA07), and the Alexander von Humboldt Foundation of Germany
More Information
  • This paper investigates the anomaly-resistant decentralized state estimation (SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements (i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points (MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach; 2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement; and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.

     

  • loading
  • [1]
    F. Han, X. Lao, J. Li, M. Wang, and H. Dong, “Dynamic event-triggered protocol-based distributed secondary control for islanded microgrids,” Int. J. Electrical Power &Energy Systems, vol. 137, p. 107723, May 2022.
    [2]
    Z. J. Wang, W. Wei, J. Z. F. Pang, F. Liu, B. Yang, X. P. Guan, and S. W. Mei, “Online optimization in power systems with high penetration of renewable generation: Advances and prospects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 839–858, 2023. doi: 10.1109/JAS.2023.123126
    [3]
    L. Xie, D-H. Choi, S. Kar, and H. V. Poor, “Fully distributed state estimation for wide-area monitoring systems,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1154–1169, 2012. doi: 10.1109/TSG.2012.2197764
    [4]
    A. Singh and S. K. Parida, “Power system frequency and phasor estimation for a low-cost synchrophasor device using the nonlinear least-square method,” IEEE Trans. Industry Applications, vol. 58, no. 1, pp. 39–48, 2022. doi: 10.1109/TIA.2021.3117932
    [5]
    T. Meng, Z. Lin, and Y. A. Shamash, “Distributed cooperative control of battery energy storage systems in DC microgrid,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 606–616, 2021. doi: 10.1109/JAS.2021.1003874
    [6]
    J. Wu, C. Peng, H. Yang, and Y. L. Wang, “Recent advances in event-triggered security control of networked systems: A survey,” Int. J. Systems Science, vol. 53, no. 12, pp. 2624–2643, 2022. doi: 10.1080/00207721.2022.2053893
    [7]
    B. Qu, Z. Wang, B. Shen, and H. Dong, “Decentralized dynamic state estimation for multi-machine power systems with non-Gaussian noises: Outlier detection and localization,” Automatica, vol. 153, p. 111010, 2023. doi: 10.1016/j.automatica.2023.111010
    [8]
    M. Kooshkbagh, H. J. Marquez, and W. Xu, “Event-triggered approach to dynamic state estimation of a synchronous machine using cubature Kalman filter,” IEEE Trans. Control Syst. Technology, vol. 28, no. 5, pp. 2013–2020, 2020. doi: 10.1109/TCST.2019.2923374
    [9]
    M. Göl and A. Abur, “A hybrid state estimator for systems with limited number of PMUs,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1511–1517, 2015. doi: 10.1109/TPWRS.2014.2344012
    [10]
    B. Qu, Z. Wang, and B. Shen, “Fusion estimation for a class of multi-rate power systems with randomly occurring SCADA measurement delays,” Automatica, vol. 125, p. 109408, 2021. doi: 10.1016/j.automatica.2020.109408
    [11]
    Z. H. Pang, L. Z. Fan, H. Guo, Y. Shi, R. Chai, J. Sun, and G. Liu, “Security of networked control systems subject to deception attacks: A survey,” Int. J. Syst. Science, vol. 53, no. 16, pp. 3577–3598, 2022. doi: 10.1080/00207721.2022.2143735
    [12]
    F. Qu, X. Zhao, X. Wang, and E. Tian, “Probabilistic-constrained distributed fusion filtering for a class of time-varying systems over sensor networks: A torus-event-triggering mechanism,” Int. J. Syst. Science, vol. 53, no. 6, pp. 1288–1297, 2022. doi: 10.1080/00207721.2021.1998721
    [13]
    Z. Lu and G. Guo, “Control and communication scheduling co-design for networked control systems: A survey,” Int. J. Syst. Science, vol. 54, no. 1, pp. 189–203, 2023. doi: 10.1080/00207721.2022.2097332
    [14]
    M. Ghosal and V. Rao, “Fusion of multirate measurements for nonlinear dynamic state estimation of the power systems,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 216–226, 2019. doi: 10.1109/TSG.2017.2737359
    [15]
    L. Hu, Z. Wang, and X. Liu, “Dynamic state estimation of power systems with quantization effects: A recursive filter approach,” IEEE Trans. Neural Networks and Learning Syst., vol. 27, no. 8, pp. 1604–1614, 2016. doi: 10.1109/TNNLS.2014.2381853
    [16]
    M. N. Kurt, Y. Yılmaz, and X. Wang, “Secure distributed dynamic state estimation in wide-area smart grids,” IEEE Trans. Infor. Forensics and Security, vol. 15, pp. 800–815, 2020. doi: 10.1109/TIFS.2019.2928207
    [17]
    D. E. Marelli and M. Fu, “Distributed weighted least-squares estimation with fast convergence for large-scale systems,” Automatica, vol. 51, pp. 27–39, 2015. doi: 10.1016/j.automatica.2014.10.077
    [18]
    K. Li and X. Han, “A distributed Gauss-Newton method for distribution system state estimation,” Int. J. Electrical Power and Energy Syst., vol. 136, p. 107694, 2022. doi: 10.1016/j.ijepes.2021.107694
    [19]
    M. Rostami and S. Lotfifard, “Distributed dynamic state estimation of power systems,” IEEE Trans. Industrial Informatics, vol. 14, no. 8, pp. 3395–3404, 2018. doi: 10.1109/TII.2017.2777495
    [20]
    A. K. Singh and B. C. Pal, “Decentralized robust dynamic state estimation in power systems using instrument transformers,” IEEE Trans. Signal Processing, vol. 66, no. 6, pp. 1541–1550, 2018. doi: 10.1109/TSP.2017.2788424
    [21]
    Z. Guo, S. Li, X. Wang, and W. Heng, “Distributed point-based Gaussian approximation filtering for forecasting-aided state estimation in power systems,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2597–2608, 2016. doi: 10.1109/TPWRS.2015.2477285
    [22]
    M. Z. El-Sharfy, S. Saxena, and H. E. Farag, “Optimal design of islanded microgrids considering distributed dynamic state estimation,” IEEE Trans. Industrial Informatics, vol. 17, no. 3, pp. 1592–1603, 2021.
    [23]
    Y. Sun, M. Fu, B. Wang, H. Zhang, and D. Marelli, “Dynamic state estimation for power networks using distributed MAP technique,” Automatica, vol. 73, pp. 23–37, 2016.
    [24]
    B. Wei, E. Tian, T. Zhang, and X. Zhao, “Probabilistic-constrained H tracking control for a class of stochastic nonlinear systems subject to DoS attacks and measurement outliers,” IEEE Trans. Circuits and Systems I-Regular Papers, vol. 68, no. 10, pp. 4381–4392, 2021. doi: 10.1109/TCSI.2021.3097824
    [25]
    H. Tao, H. Tan, Q. Chen, H. Liu, and J. Hu, “H state estimation for memristive neural networks with randomly occurring DoS attacks,” Syst. Science &Control Engineering, vol. 10, no. 1, pp. 154–165, 2022.
    [26]
    W. Xue, X. Luan, S. Zhao, and F. Liu, “A fusion Kalman filter and UFIR estimator using the influence function method,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 709–718, Apr. 2022. doi: 10.1109/JAS.2021.1004389
    [27]
    B. Jiang, H. Dong, Y. Shen, and S. Mu, “Encoding-decoding-based recursive filtering for fractional-order systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1103–1106, Jun. 2022. doi: 10.1109/JAS.2022.105644
    [28]
    F. M. Shakiba, M. Shojaee, S. M. Azizi, and M. Zhou, “Real-time sensing and fault diagnosis for transmission lines,” Int. J. Network Dynamics and Intelligence, vol. 1, no. 1, pp. 36–47, 2022.
    [29]
    L. Dang, B. Chen, S. Wang, W. Ma, and P. Ren, “Robust power system state estimation with minimum error entropy unscented Kalman filter,” IEEE Trans. Instrumentation and Measurement, vol. 69, no. 11, pp. 8797–8808, 2020. doi: 10.1109/TIM.2020.2999757
    [30]
    J. A. D. Massignan, J. B. A. London, and V. Miranda, “Tracking power system state evolution with maximum-correntropy-based extended Kalman filter,” J. Modern Power Syst. and Clean Energy, vol. 8, no. 4, pp. 616–626, 2020. doi: 10.35833/MPCE.2020.000122
    [31]
    H. Song, D. Ding, H. Dong, and X. Yi, “Distributed filtering based on Cauchy-kernel-based maximum correntropy subject to randomly occurring cyber-attacks,” Automatica, vol. 135, p. 110004, 2022. doi: 10.1016/j.automatica.2021.110004
    [32]
    W. Liu, P. P. Pokharel and J. C. Principe, “Error entropy, correntropy and M-estimation,” in Proc. 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, pp. 179–184.
    [33]
    M. B. Do Coutto Filho, and J. C. S. de Souza, “Forecasting-aided state estimation-Part I: Panorama,” IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1667–1677, 2009. doi: 10.1109/TPWRS.2009.2030295
    [34]
    A. M. Leite da Silva, M. B. Do Coutto Filho, and J. F. de Queiroz, “State forecasting in electric power systems,” IEE Proceedings C Generation, Transmission and Distribution, vol. 130, no. 5, pp. 237–244, 1983.
    [35]
    A. Sinha and J. Mondal, “Dynamic state estimator using ANN based bus load prediction,” IEEE Trans. Power Apparatus and Syst., vol. 14, no. 4, pp. 1219–1225, 1999. doi: 10.1109/59.801876
    [36]
    Q. Zhang and Y. Zhou, “Recent advances in non-Gaussian stochastic systems control theory and its applications,” Int. J. Network Dynamics and Intelligence, vol. 1, no. 1, pp. 111–119, 2022.
    [37]
    J. C. Príncipe, Information Theoretic Learning: Rényi’s Entropy and Kernel Perspectives, New York, USA: Springer Press, 2010.
    [38]
    T. Hu, J. Fan, Q. Wu, and D.-X. Zhou, “Learning theory approach to minimum error entropy,” J. Machine Learning Research, vol. 14, pp. 377–397, 2013.
    [39]
    D. Erdogmus and J. C. Principe, “An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems,” IEEE Trans. Signal Processing, vol. 50, no. 7, pp. 1780–1786, 2002. doi: 10.1109/TSP.2002.1011217
    [40]
    R. J. Bessa, V. Miranda, and J. Gama, “Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting,” IEEE Trans. Power Systems, vol. 24, no. 4, pp. 1657–1666, 2009. doi: 10.1109/TPWRS.2009.2030291
    [41]
    Y. Xie, Y. Li, Y. Gu, J. Cao, and B. Chen, “Fixed-point minimum error entropy with fiducial points,” IEEE Trans. Signal Processing, vol. 68, pp. 3824–3833, 2020. doi: 10.1109/TSP.2020.3001404
    [42]
    T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators”,” IEEE Trans. Autom. Control, vol. 47, no. 8, pp. 1406–1409, 2002. doi: 10.1109/TAC.2002.800742
    [43]
    J. Zhao and L. Mili, “A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation,” IEEE J. Selected Topics in Signal Processing, vol. 12, no. 4, pp. 578–592, 2018. doi: 10.1109/JSTSP.2018.2827261
    [44]
    R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, 2011. doi: 10.1109/TPWRS.2010.2051168
    [45]
    G. N. Korres and N. M. Manousakis, “State estimation and bad data processing for systems including PMU and SCADA measurements,” Electric Power Systems Research, vol. 81, no. 7, pp. 1514–1524, Jul. 2011. doi: 10.1016/j.jpgr.2011.03.013
    [46]
    J. Zhao, A. Gomez-Exposito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal, A. K. Singh, J. Qi, Z. Huang, and A. P. S. Meliopoulos, “Power system dynamic state estimation: Motivations, definitions, methodologies, and future work,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3188–3198, 2019. doi: 10.1109/TPWRS.2019.2894769
    [47]
    R. Caballero-Águila, A. Hermoso-Carazo, and J. Linares-Pérez, “Networked fusion estimation with multiple uncertainties and time-correlated channel noise,” Information Fusion, vol. 54, pp. 161–171, 2020. doi: 10.1016/j.inffus.2019.07.008
    [48]
    D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician MIMO channel-aware and jamming-aware decision fusion,” IEEE Trans. Signal Processing, vol. 65, no. 15, pp. 3866–3880, 2017. doi: 10.1109/TSP.2017.2686375
    [49]
    Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased finite impluse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions,” IEEE Control Systems Magazine, vol. 37, no. 5, pp. 70–89, 2017. doi: 10.1109/MCS.2017.2718830
    [50]
    X.-M. Zhang, Q.-L. Han, X. Ge, and L. Ding, “Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks,” IEEE Trans. Cyber., vol. 50, no. 8, pp. 3616–3626, 2020. doi: 10.1109/TCYB.2019.2956137
    [51]
    X. Ge, Q.-L. Han, and Z. Wang, “A threshold-parameter-dependent approach to designing distributed event-triggered H consensus filters over sensor networks,” IEEE Trans. Cyber., vol. 49, no. 4, pp. 1148–1159, 2019. doi: 10.1109/TCYB.2017.2789296
    [52]
    J. Hu, C. Jia, H. Yu, and H. Liu, “Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 941–944, 2022. doi: 10.1109/JAS.2022.105581
    [53]
    P. Wen, X. Li, N. Hou, and S. Mu, “Distributed recursive fault estimation with binary encoding schemes over sensor networks,” Syst. Science &Control Engineering, vol. 10, no. 1, pp. 417–427, 2022.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (398) PDF downloads(73) Cited by()

    Highlights

    • A novel decentralized state estimation algorithm is developed for the wide-area power system which is divided into several non-overlapping areas
    • An augmented model is constructed to improve the data redundancy with the aid of unscented transformation approach and statistical linearization approach
    • The minimum error entropy with fiducial points criterion is adopted in the state estimator design to enhance the resistance against measurement with anomalies

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return