IEEE/CAA Journal of Automatica Sinica
Citation: | D. Luo, Y. Wang, and Y. Song, “Practical prescribed time tracking control with bounded time-varying gain under non-vanishing uncertainties,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 219–230, Jan. 2024. doi: 10.1109/JAS.2023.123738 |
[1] |
Y. D. Song, Y. J. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, pp. 243–251, Jul. 2017. doi: 10.1016/j.automatica.2017.06.008
|
[2] |
Y. J. Wang and Y. D. Song, “Leader-following control of high-order multi-agent systems under directed graphs: Pre-specified finite time approach,” Automatica, vol. 87, pp. 113–120, Jan. 2018. doi: 10.1016/j.automatica.2017.09.017
|
[3] |
B. D. Ning, Q. L. Han, Z. Y. Zuo, L. Ding, Q. Lu, and X. H. Ge, “Fixedtime and prescribed-time consensus control of multiagent systems and its applications: A survey of recent trends and methodologies,” IEEE Trans. Industrial Informatics, vol. 19, no. 2, pp. 1121–1135, Feb. 2023. doi: 10.1109/TII.2022.3201589
|
[4] |
P. Krishnamurthy, F. Khorrami, and M. Krstic, “A dynamic high-gain design for prescribed-time regulation of nonlinear systems,” Automatica, vol. 115, p. 108860, 2020. doi: 10.1016/j.automatica.2020.108860
|
[5] |
H. F. Ye and Y. D. Song, “Prescribed-time tracking control of MIMO nonlinear systems under non-vanishing uncertainties,” IEEE Trans. Automatic Control, vol. 68, no. 6, pp. 3664–3671, Jun. 2023. doi: 10.1109/TAC.2022.3194100
|
[6] |
W. Q. Li and M. Krstic, “Stochastic nonlinear prescribed-time stabilization and inverse optimality,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1179–1193, Mar. 2022. doi: 10.1109/TAC.2021.3061646
|
[7] |
Y. J. Wang, Y. D. Song, D. J. Hill, and M. Kristic, “Prescribed-time consensus and containment control of networked multiagent systems,” IEEE Trans. Cyber., vol. 49, no. 4, pp. 1138–1147, Apr. 2019. doi: 10.1109/TCYB.2017.2788874
|
[8] |
Y. H. Ren, W. N. Zhou, Z. W. Li, L. Liu, and Y. Q. Sun, “Prescribedtime consensus tracking of multiagent systems with nonlinear dynamics satisfying time-varying lipschitz growth rates,” IEEE Trans. Cyber., vol. 53, no. 4, pp. 2097–2109, Apr. 2023. doi: 10.1109/TCYB.2021.3109294
|
[9] |
Z. K. Wang, Y. W. Fang, W. X. Fu, W. H. Ma, and M. G. Wang, “Prescribed-time cooperative guidance law against manoeuvring target with input saturation,” Int. J. Control, vol. 96, no. 5, pp. 1177–1189, 2023. doi: 10.1080/00207179.2022.2033850
|
[10] |
Y. H. Ren, W. N. Zhou, Z. W. Li, L. Liu, and Y. Q. Sun, “Prescribedtime cluster lag consensus control for second-order non-linear leaderfollowing multiagent systems,” ISA Trans., vol. 109, pp. 49–60, Mar. 2021. doi: 10.1016/j.isatra.2020.09.012
|
[11] |
C. C. Hua, P. Ning, and K. Li, “Adaptive prescribed-time control for a class of uncertain nonlinear systems,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6159–6166, Nov. 2022. doi: 10.1109/TAC.2021.3130883
|
[12] |
G. W. Zuo and Y. J. Wang, “Adaptive prescribed finite time control for strict-feedback systems,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5729–5736, Sept. 2023. doi: 10.1109/TAC.2022.3225465
|
[13] |
X. Yuan, B. Chen, and C. Lin, “Prescribed finite-time adaptive neural tracking control for nonlinear state-constained systems: Barrier function approach,” IEEE Trans. Neural Networks and Learning Syst., vol. 33, no. 12, pp. 7513–7522, Dec. 2022. doi: 10.1109/TNNLS.2021.3085324
|
[14] |
Y. Lei, Y. W. Wang, X. K. Liu, and W. Yang, “Prescribed-time stabilization of singularly perturbed systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 569–571, Jan. 2023. doi: 10.1109/JAS.2023.123246
|
[15] |
P. Krishnamurthy, F. Khorrami, and M. Krstic, “Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems,” European J. Control, vol. 55, pp. 14–23, Sept. 2020. doi: 10.1016/j.ejcon.2019.09.005
|
[16] |
H. F. Ye and Y. D. Song, “Backtepping design embedded with timevarying command filters,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 69, no. 6, pp. 2832–2836, Jun. 2022. doi: 10.1109/TCSII.2022.3144593
|
[17] |
M. Segata and R. Lo Cigno, “Emergency braking: A study of network and application performance,” in Proc. 8th ACM Inter. Workshop on Vehicular Inter-Networking, 2011, pp. 1–10.
|
[18] |
I. S. Jeon, J. I. Lee, and M. J. Tahk, “Impact-time-control guidance law for anti-ship missiles,” IEEE Trans. Control Syst. Technology, vol. 14, no. 2, pp. 260–266, Feb. 2006. doi: 10.1109/TCST.2005.863655
|
[19] |
L. Tian, J. J. Gao, and J. Wang, “Reliability design for rendezvous and docking information stream of Shenzhou spaceship,” Spacecraft Engineering, vol. 20, no. 6, pp. 50–54, 2011.
|
[20] |
V. T. Haimo, “Finite time controller,” SIAM J. Control and Optimization, vol. 24, no. 4, pp. 760–770, 1986. doi: 10.1137/0324047
|
[21] |
Bhat S. P. and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control and Optimization, vol. 38, no. 3, pp. 751–766, Feb. 2000. doi: 10.1137/S0363012997321358
|
[22] |
Y. J. Wang, Y. D. Song, and W. Ren, “Distributed adaptive finite-time approach for formation-containment control of networked nonlinear systems under directed topology.,” IEEE Trans. Neural Networks &Learning Syst., vol. 29, no. 7, pp. 3164–3175, Jul. 2017.
|
[23] |
S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translation and rotional double integrator,” IEEE Trans. Autom. Control, vol. 43, no. 5, pp. 678–682, May 1998. doi: 10.1109/9.668834
|
[24] |
J. M. Coron and L. Praly, “Adding an integrator for the stabilization problem,” Systems &Control Letters, vol. 17, no. 2, pp. 89–104, Mar. 1991.
|
[25] |
L. Wei and C. Qian, “Adding a power integrator: A tool for global stabilization of high-order lower-triangular systems,” Systems &Control Letters, vol. 39, no. 5, pp. 339–351, Apr. 2000.
|
[26] |
S. P. Bhat and D. S. Bernstein, “Finite-time stability of homogeneous systems,” in Proc. American Control Conf., 1997, vol. 43, pp. 2513–2514.
|
[27] |
S. Liu, Z. Geng, and J. Sun, “Finite-time attitude control: A finite-time passivity approach,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 102–108, Jan. 2015. doi: 10.1109/JAS.2015.7032911
|
[28] |
J. P. Yu, P. Shi, J. P. Liu, and C. Lin, “Neuroadaptive finite-time control for nonlinear MIMO systems with input constraint,” IEEE Trans. Cyber., vol. 52, no. 7, pp. 6676–6683, Jul. 2022. doi: 10.1109/TCYB.2020.3032530
|
[29] |
A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Nov. 2012. doi: 10.1109/TAC.2011.2179869
|
[30] |
B. D. Ning, Z. Y. Zuo, J. Jin, and J. C. Zheng, “Distributed fixed-time coordinated tracking for nonlinear multi-agent systems under directed graphs,” Asian J. Control, vol. 20, no. 2, pp. 646–658, Mar. 2018. doi: 10.1002/asjc.1612
|
[31] |
Y. Liu, H. Y. Li, Z. Y. Zuo, X. D. Li, and R. Q. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413
|
[32] |
Y. Orlov, R. I. V. Kairuz, and L. T. Aguilar, “Prescribed-time robust differentiator design using finite varying gains,” IEEE Control Syst. Letters, vol. 6, pp. 620–625, Vol. 2022. doi: 10.1109/LCSYS.2021.3084134
|
[33] |
R. I. V. Kairuz, Y. Orlov, and L. T. Aguilar, “Robust observer design with prescribed settling-time bound and finite varying gains,” European J. Control, vol. 68, p. 100667, 2022. doi: 10.1016/j.ejcon.2022.100667
|
[34] |
R. Aldana-López, R. Seeber, D. Gómez-Gutiéerrez, M. T. Angulo, and M. Defoort, “A redesign methodology generating predefined-time differentiators with bounded time-varying gains,” Int. J. Robust and Nonlinear Control, 2022. DOI: 10.1002/rnc.6315.
|
[35] |
Y. D. Song and J. Su, “A unified Lyapunov characterization for finite time control and prescribed time control,” Int. J. Robust and Nonlinear Control, vol. 33, pp. 2930–2949, 2023. doi: 10.1002/rnc.6544
|
[36] |
G. W. Zuo and Y. J. Wang, “Asymptotic tracking control for stateconstrained strict-feedback systems with non-vanishing uncertainties,” Int. J. Robust and Nonlinear Control, vol. 32, no. 10, pp. 6017–6034, Mar. 2022. doi: 10.1002/rnc.6123
|
[37] |
Y. J. Wang and Y. D. Song, “A general approach to precise tracking of nonlinear systems subject to non-vanishing uncertainties,” Automatica, vol. 106, pp. 306–314, Aug. 2019. doi: 10.1016/j.automatica.2019.05.008
|
[38] |
S. M. Gu, C. J. Qian, and Z. Ni, “Finite-time integral control for a class of nonlinear planar systems with non-vanishing uncertainties,” Automatica, vol. 136, p. 110016, 2022. doi: 10.1016/j.automatica.2021.110016
|
[39] |
M. M. Monahemi and M. Krstic, “Control of wing rock motion using adaptive feedback linearization,” J. Guidance,Control and Dynamics, vol. 19, no. 4, pp. 905–912, Jul. 1996. doi: 10.2514/3.21717
|
[40] |
Y. M. Li, S. C. Tong, Y. J. Liu, and T. S. Li, “Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach,” IEEE Trans. Fuzzy Systems, vol. 22, no. 1, pp. 164–176, Feb. 2014. doi: 10.1109/TFUZZ.2013.2249585
|
[41] |
Y. D. Song, L. He, and Y. J. Wang, “Globally exponentially stable tracking control of self-restructuring nonlinear systems,” IEEE Trans. Cyber., vol. 51, no. 9, pp. 4755–4765, Sept. 2021. doi: 10.1109/TCYB.2019.2951574
|
[42] |
K. Zhao, Y. D. Song, C. L. P. Chen, and L. Chen, “Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach,” Automatica, vol. 119, p. 109102, 2020. doi: 10.1016/j.automatica.2020.109102
|