IEEE/CAA Journal of Automatica Sinica
Citation: | Y. L. Gong, J. H. Zhou, Q. W. Wu, M. C. Zhou, and J. H. Wen, “A length-adaptive non-dominated sorting genetic algorithm for bi-objective high-dimensional feature selection,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1834–1844, Sept. 2023. doi: 10.1109/JAS.2023.123648 |
[1] |
J. Li, K. Cheng, S. Wang, et al., “Feature selection: A data perspective,” ACM Computing Surveys, vol. 50, no. 6, pp. 1–45, 2017.
|
[2] |
G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers &Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.
|
[3] |
H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, 2019. doi: 10.1109/JAS.2019.1911447
|
[4] |
K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Machine Learning, Amsterdam, The Netherlands: Elsevier, 1992, pp. 249–256.
|
[5] |
J. Reunanen, “Overfitting in making comparisons between variable selection methods,” J. Machine Learning Research, vol. 3, no. 3, pp. 1371–1382, 2003.
|
[6] |
H. Chen, et al., “Robust decision trees against adversarial examples,” in Proc. Inter. Conf. Machine Learning, 2019, pp. 1122–1131.
|
[7] |
X. Luo, X. Wen, M. Zhou, et al., “Decision-tree-initialized dendritic neuron model for fast and accurate data classification,” IEEE Trans. Neural Networks Learning Syst., vol. 33, no. 9, pp. 4173–4183, 2022. doi: 10.1109/TNNLS.2021.3055991
|
[8] |
R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Royal Statistical Society: Series B, vol. 58, no. 1, pp. 267–288, 1996.
|
[9] |
T. M. Hamdani, J. M. Won, A. M. Alimi, et al., “Multi-objective feature selection with NSGA II,” in Proc. Inter. Conf. Adaptive Natural Computing Algorithms, 2007, pp. 240–247.
|
[10] |
S. Han, K. Zhu, M. Zhou, et al., “Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection,” IEEE Trans. Syst.,Man,Cybe.: Syst., vol. 52, no. 12, pp. 7845–7857, 2022. doi: 10.1109/TSMC.2022.3171549
|
[11] |
Z. Wang, S. Gao, M. Zhou, et al., “Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification,” IEEE Trans. Cyber., 2022. DOI: 10.1109/TCYB.2022.3185554.
|
[12] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017
|
[13] |
B. H. Nguyen, B. Xue, and M. Zhang, “A survey on swarm intelligence approaches to feature selection in data mining,” Swarm Evolutionary Computation, vol. 54, p. 100663, 2020. doi: 10.1016/j.swevo.2020.100663
|
[14] |
V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, Feature Selection for High-Dimensional Data. Cham, Switzerland: Springer, 2015.
|
[15] |
L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast correlation-based filter solution,” in Proc. 20th Inter. Conf. Machine Learning, 2003, pp. 856–863.
|
[16] |
Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature selection for high-dimensional data analysis,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 32, no. 9, pp. 1610–1626, 2010. doi: 10.1109/TPAMI.2009.190
|
[17] |
A. Bommert, et al., “Benchmark for filter methods for feature selection in high-dimensional classification data,” Computational Statistics &Data Analysis, vol. 143, p. 106839, 2020.
|
[18] |
J. Lee, I. Y. Choi, and C.-H. Jun, “An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data,” Expert Syst. Applications, vol. 166, p. 113971, 2021. doi: 10.1016/j.eswa.2020.113971
|
[19] |
M. García-Torres, F. Gómez-Vela, B. Melián-Batista, et al., “High-dimensional feature selection via feature grouping: A variable neighborhood search approach,” Information Sciences, vol. 326, pp. 102–118, 2016. doi: 10.1016/j.ins.2015.07.041
|
[20] |
S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional classification using a competitive swarm optimizer,” Soft Computing, vol. 22, no. 3, pp. 811–822, 2018. doi: 10.1007/s00500-016-2385-6
|
[21] |
W. Ma, X. Zhou, H. Zhu, et al., “A two-stage hybrid ant colony optimization for high-dimensional feature selection,” Pattern Recognition, vol. 116, p. 107933, 2021. doi: 10.1016/j.patcog.2021.107933
|
[22] |
B. Tran, B. Xue, and M. Zhang, “Variable-length particle swarm optimization for feature selection on high-dimensional classification,” IEEE Trans. Evolutionary Computation, vol. 23, no. 3, pp. 473–487, 2019. doi: 10.1109/TEVC.2018.2869405
|
[23] |
N. D. Cilia, C. De Stefano, F. Fontanella, et al., “Variable-length representation for EC-based feature selection in high-dimensional data,” in Proc. Int. Conf. Applications Evolutionary Computation (Part of EvoStar), 2019, pp. 325–340.
|
[24] |
J. Zhou, Q. Wu, M. C. Zhou, et al., “LAGAM: A length-adaptive genetic algorithm with Markov blanket for high-dimensional feature selection in classification,” IEEE Trans. Cybernetics, 2023. DOI: 10.1109/TCYB.2022.3163577.
|
[25] |
M. Labani, P. Moradi, and M. Jalili, “A multi-objective genetic algorithm for text feature selection using the relative discriminative criterion,” Expert Systems Applications, vol. 149, p. 113276, 2020. doi: 10.1016/j.eswa.2020.113276
|
[26] |
A.-D. Li, B. Xue, and M. Zhang, “Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection,” Information Sciences, vol. 523, pp. 245–265, 2020. doi: 10.1016/j.ins.2020.03.032
|
[27] |
Y. Xue, H. Zhu, J. Liang, et al., “Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification,” Knowledge-Based Systems, vol. 227, p. 107218, 2021. doi: 10.1016/j.knosys.2021.107218
|
[28] |
Y. Zhou, W. Zhang, J. Kang, et al., “A problem-specific non-dominated sorting genetic algorithm for supervised feature selection,” Information Sciences, vol. 547, pp. 841–859, 2021. doi: 10.1016/j.ins.2020.08.083
|
[29] |
H. Xu, B. Xue, and M. Zhang, “A duplication analysis-based evolutionary algorithm for biobjective feature selection,” IEEE Trans. Evolutionary Computation, vol. 25, no. 2, pp. 205–218, 2021. doi: 10.1109/TEVC.2020.3016049
|
[30] |
B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization for feature selection in classification: A multi-objective approach,” IEEE Trans. Cyber., vol. 43, no. 6, pp. 1656–1671, 2013. doi: 10.1109/TSMCB.2012.2227469
|
[31] |
Y. Zhang, D.-W. Gong, and J. Cheng, “Multi-objective particle swarm optimization approach for cost-based feature selection in classification,” IEEE/ACM Trans. Computational Biology Bioinformatics, vol. 14, no. 1, pp. 64–75, 2017. doi: 10.1109/TCBB.2015.2476796
|
[32] |
M. Amoozegar and B. Minaei-Bidgoli, “Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism,” Expert Systems Applications, vol. 113, pp. 499–514, 2018. doi: 10.1016/j.eswa.2018.07.013
|
[33] |
Y. Zhou, J. Kang, S. Kwong, et al., “An evolutionary multi-objective optimization framework of discretization-based feature selection for classification,” Swarm Evolutionary Computation, vol. 60, p. 100770, 2021. doi: 10.1016/j.swevo.2020.100770
|
[34] |
A. Rashno, M. Shafipour, and S. Fadaei, “Particle ranking: An efficient method for multi-objective particle swarm optimization feature selection,” Knowledge-Based Systems, vol. 245, p. 108640, 2022. doi: 10.1016/j.knosys.2022.108640
|
[35] |
Y. Zhang, D. Gong, X. Gao, et al., “Binary differential evolution with self-learning for multi-objective feature selection,” Information Sciences, vol. 507, pp. 67–85, 2020. doi: 10.1016/j.ins.2019.08.040
|
[36] |
U. Mlakar, I. Fister, J. Brest, et al., “Multi-objective differential evolution for feature selection in facial expression recognition systems,” Expert Systems Applications, vol. 89, pp. 129–137, 2017. doi: 10.1016/j.eswa.2017.07.037
|
[37] |
X.-H. Wang, Y. Zhang, X. Y. Sun, et al., “Multi-objective feature selection based on artificial bee colony: An acceleration approach with variable sample size,” Applied Soft Computing, vol. 88, p. 106041, 2020. doi: 10.1016/j.asoc.2019.106041
|
[38] |
E. Hancer, B. Xue, M. Zhang, et al., “Pareto front feature selection based on artificial bee colony optimization,” Information Sciences, vol. 422, pp. 462–479, 2018. doi: 10.1016/j.ins.2017.09.028
|
[39] |
I. Aljarah, M. Habib, H. Faris, et al., “A dynamic locality multi-objective salp swarm algorithm for feature selection,” Computers &Industrial Engineering, vol. 147, p. 106628, 2020.
|
[40] |
E. F. Ohata, G. M. Bezerra, J. V. S. das Chagas, et al., “Automatic detection of COVID-19 infection using chest X-ray images through transfer learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 239–248, 2021. doi: 10.1109/JAS.2020.1003393
|
[41] |
L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.
|
[42] |
K. Shang, H. Ishibuchi, L. He, et al., “A survey on the hypervolume indicator in evolutionary multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 25, no. 1, pp. 1–20, 2021. doi: 10.1109/TEVC.2020.3013290
|
[43] |
F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs Statistics, New York, USA: Springer, 1992, pp. 196–202.
|
[44] |
Y. Zhang, G. G. Wang, K. Li, et al., “Enhancing MOEA/D with information feedback models for large-scale many-objective optimization,” Information Sciences, vol. 522, pp. 1–16, 2020. doi: 10.1016/j.ins.2020.02.066
|
[45] |
S. Han, K. Zhu, M. C. Zhou, et al., “A novel multiobjective fireworks algorithm and its applications to imbalanced distance minimization problems,” IEEE/CAA J. Automa. Sinica, vol. 9, no. 8, pp. 1476–1489, 2022. doi: 10.1109/JAS.2022.105752
|
[46] |
Q. Fan and O. K. Ersoy, “Zoning search with adaptive resource allocating method for balanced and imbalanced multimodal multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1163–1176, 2021. doi: 10.1109/JAS.2021.1004027
|
[47] |
Q. Kang, X. Song, M. C. Zhou, et al., “A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Syst.,Man,Cybernetics: Syst., vol. 49, no. 12, pp. 2416–2423, 2018.
|
[48] |
X. Zhu and M. Zhou, “Multiobjective optimized cloudlet deployment and task offloading for mobile-edge computing,” IEEE Internet Things J., vol. 8, no. 20, pp. 15582–15595, 2021. doi: 10.1109/JIOT.2021.3073113
|
[49] |
M. Cui, L. Li, M. Zhou, et al., “Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems,” IEEE Trans. on Evolutionary Computation, vol. 26, no. 4, pp. 676–689, 2022. doi: 10.1109/TEVC.2021.3113923
|
[50] |
Z. Lei, S. Gao, Z. Zhang, et al., “MO4: A many-objective evolutionary algorithm for protein structure prediction,” IEEE Trans. Evolutionary Computation, vol. 26, no. 3, pp. 417–430, 2022. doi: 10.1109/TEVC.2021.3095481
|
[51] |
H. Li, B. Wang, Y. Yuan, et al., “Scoring and dynamic hierarchy-based NSGA-II for multiobjective workflow scheduling in the cloud,” IEEE Trans. Autom. Science Engineering, vol. 19, no. 2, pp. 982–993, 2022. doi: 10.1109/TASE.2021.3054501
|
[52] |
M. Cui, et al, “A bi-population cooperative optimization algorithm assisted by an autoencoder for medium-scale expensive problems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1952–1966, 2022.
|
[53] |
Y. Zhou, W. Xu, M. Zhou, and Z.-H. Fu, “Bi-Trajectory Hybrid Search to Solve Bottleneck-Minimized Colored Traveling Salesman Problems,” IEEE Trans. Autom. Science Engineering, 2023. DOI: 10.1109/TASE.2023.3236317
|