A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 9
Sep.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. F. Li, Y. L. Zhang, P. Li, R. Law, Z. R. Xiang, X. Xu, L. M. Zhu, and E. Q. Wu, “Position errors and interference prediction-based trajectory tracking for snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1810–1821, Sept. 2023. doi: 10.1109/JAS.2023.123612
Citation: D. F. Li, Y. L. Zhang, P. Li, R. Law, Z. R. Xiang, X. Xu, L. M. Zhu, and E. Q. Wu, “Position errors and interference prediction-based trajectory tracking for snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1810–1821, Sept. 2023. doi: 10.1109/JAS.2023.123612

Position Errors and Interference Prediction-Based Trajectory Tracking for Snake Robots

doi: 10.1109/JAS.2023.123612
Funds:  This work was supported in part by the National Natural Science Foundation of China (T2325018, U2241228, 62273019, 61825305, U1933125, 72192820, 72192824, 62171274), the China Postdoctoral Science Foundation (2022M710093), and the Open Project Program of the Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions (AMICM202102)
More Information
  • This work presents a trajectory tracking control method for snake robots. This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined trajectory. The optimized line-of-sight (LOS) guidance strategy drives the robot’s steering angle to maintain its anti-sideslip ability by predicting position errors and interferences. Then, the predictions of system parameters and viscous friction coefficients can compensate for the joint torque control input. The compensation is adopted to enhance the compatibility of a robot within ever-changing environments. Simulation and experimental outcomes show that our work can decrease the fluctuation peak of the tracking errors, reduce adjustment time, and improve accuracy.

     

  • loading
  • [1]
    D. Li, B. Zhang, Y. Xiu, H. Deng, M. Zhang, W. Tong, R. Law, G. Zhu, E. Q. Wu, and L. Zhu, “Snake robots play an important role in social services and military needs,” Innovation, vol. 3, no. 6, p. 100333, Nov. 2022.
    [2]
    H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R. L. Hatton, J. R. Mendelson, H. Choset, D. L. Hu, and D. I. Goldman, “Sidewinding with minimal slip: Snake and robot ascent of sandy slopes,” Science, vol. 346, no. 6206, pp. 224–229, Oct. 2014. doi: 10.1126/science.1255718
    [3]
    X. Guo, W. Zhu, and Y. Fang, “Guided motion planning for snake-like robots based on geometry mechanics and HJB equation,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7120–7130, Sept. 2019. doi: 10.1109/TIE.2018.2883278
    [4]
    D. Li, Y. Zhang, W. Tong, P. Li, R. Law, X. Xu, L.-M. Zhu, and E. Q. Wu, “Anti-disturbance path-following control for snake robots with spiral motion,” IEEE Trans. Ind. Inf., 2023. DOI: 10.1109/TII.2023.3254534
    [5]
    S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford, UK: Oxford University Press, 1993.
    [6]
    S. Takaoka, H. Yamada, and S. Hirose, “Snake-like active wheel robot ACM-R4.1 with joint torque sensor and limiter,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Francisco, USA, 2011, pp. 1081–1086.
    [7]
    Z. Lu, S. Ma, B. Li, and Y. Wang, “Serpentine locomotion of a snake-like robot controlled by musical theory,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 102–107.
    [8]
    X. Wu and S. Ma, “CPG-based control of serpentine locomotion of a snake-like robot,” Mechatronics, vol. 20, no. 2, pp. 326–334, Mar. 2010. doi: 10.1016/j.mechatronics.2010.01.006
    [9]
    S. Hirose and H. Yamada, “Snake-like robots [Tutorial],” IEEE Rob. Autom. Mag., vol. 16, no. 1, pp. 88–98, Mar. 2009. doi: 10.1109/MRA.2009.932130
    [10]
    H. Komura, H. Yamada, and S. Hirose, “Development of snake-like robot ACM-R8 with large and mono-tread wheel,” Adv. Rob., vol. 29, no. 17, pp. 1081–1094, Sept. 2015. doi: 10.1080/01691864.2014.971054
    [11]
    D. L. Hu, J. Nirody, T. Scott, and M. J. Shelley, “The mechanics of slithering locomotion,” Proc. Natl. Acad. Sci. USA, vol. 106, no. 25, pp. 10081–10085, Jun. 2009. doi: 10.1073/pnas.0812533106
    [12]
    P. Liljebäck, “Modelling, development, and control of snake robots,” Ph.D. dissertation, NUST, Trondheim, Norway, 2011.
    [13]
    P. Liljebäck, Snake Robots: Modelling, Mechatronics, and Control. London, UK: Springer, 2013.
    [14]
    E. Rezapour, A. Hofmann, K. Y. Pettersen, A. Mohammadi, and M. Maggiore, “Virtual holonomic constraint based direction following control of planar snake robots described by a simplified model,” in Proc. IEEE Conf. Control Applications, Juan Les Antibes, France, 2014, pp. 1064–1071.
    [15]
    E. Rezapour, K. Y. Pettersen, J. T. Gravdahl, and A. Hofmann, “Formation control of underactuated bio-inspired snake robots,” Artif. Life Rob., vol. 21, no. 3, pp. 282–294, Jul. 2016. doi: 10.1007/s10015-016-0297-2
    [16]
    Z. Cao, D. Zhang, B. Hu, and J. Liu, “Adaptive path following and locomotion optimization of snake-like robot controlled by the central pattern generator,” Complexity, vol. 2019, p. 8030374, Jan. 2019.
    [17]
    W. Ouyang, W. Liang, C. Li, H. Zheng, Q. Ren, and P. Li, “Steering motion control of a snake robot via a biomimetic approach,” Front. Inf. Technol. Electron. Eng., vol. 20, no. 1, pp. 32–44, Jan. 2019. doi: 10.1631/FITEE.1800554
    [18]
    T. Kano and A. Ishiguro, “Decoding decentralized control mechanism underlying adaptive and versatile locomotion of snakes,” Integr. Comp. Biol., vol. 60, no. 1, pp. 232–247, Jul. 2020. doi: 10.1093/icb/icaa014
    [19]
    D. F. Li, Z. H. Pan, H. B. Deng, and T. Peng, “2D underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot,” J. Intell. Rob. Syst., vol. 98, no. 3–4, pp. 771–790, Jan. 2020. doi: 10.1007/s10846-019-01097-9
    [20]
    D. Li, H. Deng, Z. Pan, and Y. Xiu, “Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM,” ISA Trans., vol. 122, pp. 271–280, Mar. 2022. doi: 10.1016/j.isatra.2021.04.048
    [21]
    M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, Jul. 2022. doi: 10.1109/JAS.2022.105692
    [22]
    D. Wang, M. Ha, and L. Cheng, “Neuro-optimal trajectory tracking with value iteration of discrete-time nonlinear dynamics,” IEEE Trans. Neural Netw. Learning Syst., 2021. DOI: 10.1109/TNNLS.2021.3123444
    [23]
    D. Li, Z. Pan, H. Deng, and L. Hu, “Adaptive path following controller of a multijoint snake robot based on the improved serpenoid curve,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3831–3842, Apr. 2022. doi: 10.1109/TIE.2021.3075851
    [24]
    E. Kelasidi, P. Liljeback, K. Y. Pettersen, and J. T. Gravdahl, “Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments,” IEEE Trans. Rob., vol. 33, no. 3, pp. 610–628, Jun. 2017. doi: 10.1109/TRO.2017.2651119
    [25]
    W. Yang, G. Wang, H. Shao, and Y. Shen, “Spline based curve path following of underactuated snake robots,” in Proc. Int. Conf. Robotics and Autom., Montreal, Canada, 2019, pp. 5352–5358.
    [26]
    N. Wang and C. K. Ahn, “Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8566–8575, Oct. 2020. doi: 10.1109/TIE.2019.2947845
    [27]
    X. Ding, Z. Wang, and L. Zhang, “Event-triggered vehicle sideslip angle estimation based on low-cost sensors,” IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4466–4476, Jul. 2022. doi: 10.1109/TII.2021.3118683
    [28]
    H. Zhang, X. Zhang, and R. Bu, “Sliding mode adaptive control for ship path following with sideslip angle observer,” Ocean Eng., vol. 251, p. 111106, May 2022. doi: 10.1016/j.oceaneng.2022.111106
    [29]
    F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, O. Stavdahl, and P. Liljebäck, “Perception-driven obstacle-aided locomotion for snake robots: The state of the art, challenges and possibilities,” Appl. Sci., vol. 7, no. 4, p. 336, Mar. 2017. doi: 10.3390/app7040336
    [30]
    A. Liu, W.-A. Zhang, and L. Yu, “Robust predictive tracking control for mobile robots with intermittent measurement and quantization,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 509–518, Jan. 2021. doi: 10.1109/TIE.2019.2962424
    [31]
    H. Su and W. Zhang, “Adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear systems with actuator faults,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 9, pp. 3456–3469, Sept. 2020. doi: 10.1109/TSMC.2018.2883414
    [32]
    D. Wang, L. Cheng, and J. Yan, “Self-learning robust control synthesis and trajectory tracking of uncertain dynamics,” IEEE Trans. Cybern., vol. 52, no. 1, pp. 278–286, Jan. 2022. doi: 10.1109/TCYB.2020.2979694
    [33]
    X. Jin, “Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control,” IEEE Trans. Cybern., vol. 49, no. 5, pp. 1748–1758, May 2019. doi: 10.1109/TCYB.2018.2817610
    [34]
    Z. Cao, D. Zhang, and M. C. Zhou, “Direction control and adaptive path following of 3-d snake-like robot motion,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 10980–10987, Oct. 2022. doi: 10.1109/TCYB.2021.3055519
    [35]
    V. Azimi and P. A. Vela, “Robust adaptive quadratic programming and safety performance of nonlinear systems with unstructured uncertainties,” in Proc. IEEE Conf. Decision and Control, Miami, USA, pp. 5536–5543, Dec. 2018.
    [36]
    Y. Liu, Q. Zhu, X. Zhou, and L. Wang, “Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism,” ISA Trans., vol. 121, pp. 30–39, Feb. 2022. doi: 10.1016/j.isatra.2021.03.014
    [37]
    Z. Wu, Y. Xia, and X. Xie, “Stochastic barbalat’s lemma and its applications,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1537–1543, Jun. 2012. doi: 10.1109/TAC.2011.2175071

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (572) PDF downloads(188) Cited by()

    Highlights

    • This work optimizes the LOS guidance law through predicted position errors and interference variables. This method applies anti-sideslip ability to a snake robot, which improves the tracking accuracy of the body to the desired path
    • This work uses model parameter and friction coefficient predictions of a snake robot to compensate for system input by eliminating the joint’s jitter
    • This work reduces the fluctuation peak and convergence time of errors and enhances the adaptability of a snake robot to environmental shifts

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return