IEEE/CAA Journal of Automatica Sinica
Citation: | D. F. Li, Y. L. Zhang, P. Li, R. Law, Z. R. Xiang, X. Xu, L. M. Zhu, and E. Q. Wu, “Position errors and interference prediction-based trajectory tracking for snake robots,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1810–1821, Sept. 2023. doi: 10.1109/JAS.2023.123612 |
[1] |
D. Li, B. Zhang, Y. Xiu, H. Deng, M. Zhang, W. Tong, R. Law, G. Zhu, E. Q. Wu, and L. Zhu, “Snake robots play an important role in social services and military needs,” Innovation, vol. 3, no. 6, p. 100333, Nov. 2022.
|
[2] |
H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R. L. Hatton, J. R. Mendelson, H. Choset, D. L. Hu, and D. I. Goldman, “Sidewinding with minimal slip: Snake and robot ascent of sandy slopes,” Science, vol. 346, no. 6206, pp. 224–229, Oct. 2014. doi: 10.1126/science.1255718
|
[3] |
X. Guo, W. Zhu, and Y. Fang, “Guided motion planning for snake-like robots based on geometry mechanics and HJB equation,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7120–7130, Sept. 2019. doi: 10.1109/TIE.2018.2883278
|
[4] |
D. Li, Y. Zhang, W. Tong, P. Li, R. Law, X. Xu, L.-M. Zhu, and E. Q. Wu, “Anti-disturbance path-following control for snake robots with spiral motion,” IEEE Trans. Ind. Inf., 2023. DOI: 10.1109/TII.2023.3254534
|
[5] |
S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford, UK: Oxford University Press, 1993.
|
[6] |
S. Takaoka, H. Yamada, and S. Hirose, “Snake-like active wheel robot ACM-R4.1 with joint torque sensor and limiter,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Francisco, USA, 2011, pp. 1081–1086.
|
[7] |
Z. Lu, S. Ma, B. Li, and Y. Wang, “Serpentine locomotion of a snake-like robot controlled by musical theory,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 102–107.
|
[8] |
X. Wu and S. Ma, “CPG-based control of serpentine locomotion of a snake-like robot,” Mechatronics, vol. 20, no. 2, pp. 326–334, Mar. 2010. doi: 10.1016/j.mechatronics.2010.01.006
|
[9] |
S. Hirose and H. Yamada, “Snake-like robots [Tutorial],” IEEE Rob. Autom. Mag., vol. 16, no. 1, pp. 88–98, Mar. 2009. doi: 10.1109/MRA.2009.932130
|
[10] |
H. Komura, H. Yamada, and S. Hirose, “Development of snake-like robot ACM-R8 with large and mono-tread wheel,” Adv. Rob., vol. 29, no. 17, pp. 1081–1094, Sept. 2015. doi: 10.1080/01691864.2014.971054
|
[11] |
D. L. Hu, J. Nirody, T. Scott, and M. J. Shelley, “The mechanics of slithering locomotion,” Proc. Natl. Acad. Sci. USA, vol. 106, no. 25, pp. 10081–10085, Jun. 2009. doi: 10.1073/pnas.0812533106
|
[12] |
P. Liljebäck, “Modelling, development, and control of snake robots,” Ph.D. dissertation, NUST, Trondheim, Norway, 2011.
|
[13] |
P. Liljebäck, Snake Robots: Modelling, Mechatronics, and Control. London, UK: Springer, 2013.
|
[14] |
E. Rezapour, A. Hofmann, K. Y. Pettersen, A. Mohammadi, and M. Maggiore, “Virtual holonomic constraint based direction following control of planar snake robots described by a simplified model,” in Proc. IEEE Conf. Control Applications, Juan Les Antibes, France, 2014, pp. 1064–1071.
|
[15] |
E. Rezapour, K. Y. Pettersen, J. T. Gravdahl, and A. Hofmann, “Formation control of underactuated bio-inspired snake robots,” Artif. Life Rob., vol. 21, no. 3, pp. 282–294, Jul. 2016. doi: 10.1007/s10015-016-0297-2
|
[16] |
Z. Cao, D. Zhang, B. Hu, and J. Liu, “Adaptive path following and locomotion optimization of snake-like robot controlled by the central pattern generator,” Complexity, vol. 2019, p. 8030374, Jan. 2019.
|
[17] |
W. Ouyang, W. Liang, C. Li, H. Zheng, Q. Ren, and P. Li, “Steering motion control of a snake robot via a biomimetic approach,” Front. Inf. Technol. Electron. Eng., vol. 20, no. 1, pp. 32–44, Jan. 2019. doi: 10.1631/FITEE.1800554
|
[18] |
T. Kano and A. Ishiguro, “Decoding decentralized control mechanism underlying adaptive and versatile locomotion of snakes,” Integr. Comp. Biol., vol. 60, no. 1, pp. 232–247, Jul. 2020. doi: 10.1093/icb/icaa014
|
[19] |
D. F. Li, Z. H. Pan, H. B. Deng, and T. Peng, “2D underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot,” J. Intell. Rob. Syst., vol. 98, no. 3–4, pp. 771–790, Jan. 2020. doi: 10.1007/s10846-019-01097-9
|
[20] |
D. Li, H. Deng, Z. Pan, and Y. Xiu, “Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM,” ISA Trans., vol. 122, pp. 271–280, Mar. 2022. doi: 10.1016/j.isatra.2021.04.048
|
[21] |
M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, Jul. 2022. doi: 10.1109/JAS.2022.105692
|
[22] |
D. Wang, M. Ha, and L. Cheng, “Neuro-optimal trajectory tracking with value iteration of discrete-time nonlinear dynamics,” IEEE Trans. Neural Netw. Learning Syst., 2021. DOI: 10.1109/TNNLS.2021.3123444
|
[23] |
D. Li, Z. Pan, H. Deng, and L. Hu, “Adaptive path following controller of a multijoint snake robot based on the improved serpenoid curve,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3831–3842, Apr. 2022. doi: 10.1109/TIE.2021.3075851
|
[24] |
E. Kelasidi, P. Liljeback, K. Y. Pettersen, and J. T. Gravdahl, “Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments,” IEEE Trans. Rob., vol. 33, no. 3, pp. 610–628, Jun. 2017. doi: 10.1109/TRO.2017.2651119
|
[25] |
W. Yang, G. Wang, H. Shao, and Y. Shen, “Spline based curve path following of underactuated snake robots,” in Proc. Int. Conf. Robotics and Autom., Montreal, Canada, 2019, pp. 5352–5358.
|
[26] |
N. Wang and C. K. Ahn, “Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8566–8575, Oct. 2020. doi: 10.1109/TIE.2019.2947845
|
[27] |
X. Ding, Z. Wang, and L. Zhang, “Event-triggered vehicle sideslip angle estimation based on low-cost sensors,” IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4466–4476, Jul. 2022. doi: 10.1109/TII.2021.3118683
|
[28] |
H. Zhang, X. Zhang, and R. Bu, “Sliding mode adaptive control for ship path following with sideslip angle observer,” Ocean Eng., vol. 251, p. 111106, May 2022. doi: 10.1016/j.oceaneng.2022.111106
|
[29] |
F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, O. Stavdahl, and P. Liljebäck, “Perception-driven obstacle-aided locomotion for snake robots: The state of the art, challenges and possibilities,” Appl. Sci., vol. 7, no. 4, p. 336, Mar. 2017. doi: 10.3390/app7040336
|
[30] |
A. Liu, W.-A. Zhang, and L. Yu, “Robust predictive tracking control for mobile robots with intermittent measurement and quantization,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 509–518, Jan. 2021. doi: 10.1109/TIE.2019.2962424
|
[31] |
H. Su and W. Zhang, “Adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear systems with actuator faults,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 9, pp. 3456–3469, Sept. 2020. doi: 10.1109/TSMC.2018.2883414
|
[32] |
D. Wang, L. Cheng, and J. Yan, “Self-learning robust control synthesis and trajectory tracking of uncertain dynamics,” IEEE Trans. Cybern., vol. 52, no. 1, pp. 278–286, Jan. 2022. doi: 10.1109/TCYB.2020.2979694
|
[33] |
X. Jin, “Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control,” IEEE Trans. Cybern., vol. 49, no. 5, pp. 1748–1758, May 2019. doi: 10.1109/TCYB.2018.2817610
|
[34] |
Z. Cao, D. Zhang, and M. C. Zhou, “Direction control and adaptive path following of 3-d snake-like robot motion,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 10980–10987, Oct. 2022. doi: 10.1109/TCYB.2021.3055519
|
[35] |
V. Azimi and P. A. Vela, “Robust adaptive quadratic programming and safety performance of nonlinear systems with unstructured uncertainties,” in Proc. IEEE Conf. Decision and Control, Miami, USA, pp. 5536–5543, Dec. 2018.
|
[36] |
Y. Liu, Q. Zhu, X. Zhou, and L. Wang, “Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism,” ISA Trans., vol. 121, pp. 30–39, Feb. 2022. doi: 10.1016/j.isatra.2021.03.014
|
[37] |
Z. Wu, Y. Xia, and X. Xie, “Stochastic barbalat’s lemma and its applications,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1537–1543, Jun. 2012. doi: 10.1109/TAC.2011.2175071
|