A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 2
Feb.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. H. Wang and Q.-L. Han, “The distribution of zeros of quasi-polynomials,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 301–304, Feb. 2023. doi: 10.1109/JAS.2023.123597
Citation: H. H. Wang and Q.-L. Han, “The distribution of zeros of quasi-polynomials,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 301–304, Feb. 2023. doi: 10.1109/JAS.2023.123597

The Distribution of Zeros of Quasi-Polynomials

doi: 10.1109/JAS.2023.123597
More Information
  • loading
  • [1]
    Y. Zhang, “Discrete mean estimates and the Landau-Siegel zero,” arXiv, 2022, DOI: 10.48550/arxiv.2211.02515
    [2]
    F. Golnaraghi and B. C. Kuo, Automatic Control Systems (9th ed.), Wiley, 2010.
    [3]
    J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, New York: Springer-Verlag, 1993.
    [4]
    R. Sipahi, S.-I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, “Stability and stabilization of systems with time delay,” IEEE Control Syst. Mag., vol. 31, no. 1, pp. 38–65, Jan. 2011. doi: 10.1109/MCS.2010.939135
    [5]
    X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, and Y. He, “Overview of recent advances in stability of linear systems with time-varying delays,” IET Contr. Theory Appl., vol. 13, no. 1, pp. 1–16, Jan. 2019. doi: 10.1049/iet-cta.2018.5188
    [6]
    W. Wang, “An overview of the recent advances in delay-time-based maintenance modelling,” Reliab. Eng. Syst. Saf., vol. 106, pp. 165–178, Oct. 2012. doi: 10.1016/j.ress.2012.04.004
    [7]
    H. Górecki, S. Fuksa, P. Grabowski, and A. Korytowski, Analysis and Synthesis of Time Delay Systems, Warszawa: Polish Scientific Publishers, 1989.
    [8]
    K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Boston: Birkhäuser, 2003.
    [9]
    G. J. Silva, A. Datta, and S. P. Bhattacharyya, PID Controllers for Time-Delay Systems, Boston: Birkhäuser, 2005.
    [10]
    W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, SIAM, 2007.
    [11]
    Lúcia Cossi, Introduction to Stability of Quasipolynomials, Time-Delay Systems, Prof. Dragutin Debeljkovic (Ed.), InTech, 2011, Available at: http://www.intechopen.com/books/time-delay-systems/introduction-to-stability-of-quasipolynomials.
    [12]
    H. Wang, J. Liu, and Y. Zhang, “New results on eigenvalue distribution and controller design for time delay systems,” IEEE Trans. Automat. Control, vol. 62, no. 6, pp. 2886–2901, Jun. 2017. doi: 10.1109/TAC.2016.2637002
    [13]
    H. Wang, Q.-L. Han. J. Liu, and D. He, “Discrete-time filter proportional-integral-derivative controller design for linear time-invariant systems,” Automatica, vol. 116, art no. 108918 (pp. 108918: 1-108918: 15), Jun. 2020.
    [14]
    L. S. Pontryagin, “On zeros of some transcendental functions (in Russian),” Izv. Akad. Nauk. SSSR Ser. Mat., vol. 6, no. 3, pp. 115–134, Mar. 1942.
    [15]
    L. S. Pontryagin, “On the zeros of some elementary transcendental functions. (in English),” Amer. Math. Soc. Transl., vol. 2, pp. 95–110, Jan. 1955.
    [16]
    M. S. Lee and C. S. Hsu, “On the τ-decomposition method of stability analysis for retarded dynamical systems,” SIAM J. Control, vol. 7, no. 2, pp. 242–259, May 1969. doi: 10.1137/0307017
    [17]
    K. L. Cooke and van den Driessche, “On zeroes of some transcendental equations,” Funkcialaj Ekvacioj, vol. 29, no. 1, pp. 77–90, Jan. 1986.
    [18]
    K. Walton and J. E. Marshall, “Direct method for TDS stability analysis,” IEE Proc.-Control Theory Appl., vol. 134, no. 2, pp. 101–107, Mar. 1987. doi: 10.1049/ip-d.1987.0018
    [19]
    N. Olgac and R. Sipahi, “An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems,” IEEE Trans. Automat. Control, vol. 47, no. 5, pp. 793–797, May 2002. doi: 10.1109/TAC.2002.1000275
    [20]
    R. Sipahi and N. Olgac, “Complete stability robustness of third-order LTI multiple time-delay systems,” Automatica, vol. 41, no. 8, pp. 1413–1422, Aug. 2005. doi: 10.1016/j.automatica.2005.03.022
    [21]
    P. Fu, S.-I. Niculescu, and J. Chen, “Stability of linear neutral time-delay systems: Exact conditions via matrix pencil solutions,” IEEE Trans. Automat. Control, vol. 51, no. 6, pp. 1063–1069, Jun. 2006. doi: 10.1109/TAC.2006.876804
    [22]
    R. Sipahi and I. I. Delice, “Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays,” Automatica, vol. 45, no. 6, pp. 1449–1454, Jun. 2009. doi: 10.1016/j.automatica.2009.01.017
    [23]
    J. Chen, P. Fu, S.-I. Niculescu, and Z. Guan, “An eigenvalue perturbation approach to stability analysis, Part II: When will zeros of time-delay systems cross imaginary axis?” SIAM J. Control Optim., vol. 48, no. 8, pp. 5583–5605, Sep. 2010. doi: 10.1137/080741719
    [24]
    K. Gu and M. Naghnaeian, “Stability crossing set for systems with three delays,” IEEE Trans. Automat. Control, vol. 56, no. 1, pp. 11–26, Jan. 2011. doi: 10.1109/TAC.2010.2050162
    [25]
    X.-G. Li, S.-I. Niculescu, A. Çela, H.-H. Wang, and T.-Y. Cai, “On computing Puiseux series for multiple imaginary characteristic roots of LTI systems with commensurate delays,” IEEE Trans. Automat. Control, vol. 58, no. 5, pp. 1338–1343, May 2013. doi: 10.1109/TAC.2012.2226102
    [26]
    X.-G. Li, S.-I. Niculescu, A. Çela, L. Zhang and X. Li, “A frequency-sweeping framework for stability analysis of time-delay systems,” IEEE Trans. Automat. Control, vol. 62, no. 8, pp. 3701–3716, Aug. 2017. doi: 10.1109/TAC.2016.2633533
    [27]
    F. M. Asl and A. G. Ulsoy, “Analysis of a system of linear delay differential equations,” J. Dyn. Syst.,Meas.,Control, vol. 125, no. 2, pp. 215–223, Jun. 2003. doi: 10.1115/1.1568121
    [28]
    D. Breda, “On characteristic roots and stability charts of delay differential equations,” Int. J. Robust Nonlinear Control, vol. 22, no. 8, pp. 892–917, May 2012. doi: 10.1002/rnc.1734
    [29]
    K. Engelborghs, T. Luzyanina, and D. Roose, “Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL,” ACM Trans. Math. Softw., vol. 28, no. 1, pp. 1–21, Mar. 2002. doi: 10.1145/513001.513002
    [30]
    J.-P. Richard, “Time-delay systems: An overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, Oct. 2003. doi: 10.1016/S0005-1098(03)00167-5
    [31]
    L. Pekař and Q. Gao, “Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results,” IEEE Access, vol. 6, pp. 35457–35491, Jul. 2018. doi: 10.1109/ACCESS.2018.2851453
    [32]
    W. Hou, M. Fu, H. Zhang, and Z. Wu, “Consensus conditions for general second-order multi-agent systems with communication delay,” Automatica, vol. 75, pp. 293–298, Jan. 2017. doi: 10.1016/j.automatica.2016.09.042
    [33]
    R. Sipahi and N. Olgac, “A unique methodology for the stability robustness of multiple time delay systems,” Syst. Control Lett., vol. 55, no. 10, pp. 819–825, Oct. 2006. doi: 10.1016/j.sysconle.2006.03.010
    [34]
    R. Sipahi and N. Olgac, “Complete stability analysis of neutral-type first order two-time-delay systems with cross-talking delays,” SIAM J. Control Optim., vol. 45, no. 3, pp. 957–971, Mar. 2006. doi: 10.1137/050633810
    [35]
    N. Olgac, T. Vyhlídal, and R. Sipahi, “A new perspective in the stability assessment of neutral systems with multiple and cross-talking delays,” SIAM J. Control Optim., vol. 47, no. 1, pp. 327–344, Jan. 2008. doi: 10.1137/070679302
    [36]
    K. Gu, S.-I. Niculescu, and J. Chen, “On stability crossing curves for general systems with two delays,” J. Math. Anal. Appl., vol. 311, no. 1, pp. 231–253, Nov. 2005. doi: 10.1016/j.jmaa.2005.02.034
    [37]
    G. J. Silva, A. Datta, and S. P. Bhattacharyya, “PI stabilization of first-order systems with time delay,” Automatica, vol. 37, no. 12, pp. 2025–2031, Dec. 2001. doi: 10.1016/S0005-1098(01)00165-0
    [38]
    G. J. Silva, A. Datta, and S. P. Bhattacharyya, “New results on the synthesis of PID controllers,” IEEE Trans. Automat. Control, vol. 47, no. 2, pp. 241–252, Feb. 2002. doi: 10.1109/9.983352
    [39]
    V. A. Oliveira, M. C. M. Teixeira, and L. Cossi, “Stabilizing a class of time delay systems using the Hermite-Biehler theorem,” Linear Algebra Appl., vol. 369, pp. 203–216, Aug. 2003. doi: 10.1016/S0024-3795(02)00721-8
    [40]
    V. A. Oliveira, L. V. Cossi, M. C. M. Teixeira, and A. M. F. Silva, “Synthesis of PID controllers for a class of time delay systems,” Automatica, vol. 45, no. 7, pp. 1778–1782, Jul. 2009. doi: 10.1016/j.automatica.2009.03.018
    [41]
    L. Ou, W. Zhang, and L. Yu, “Low-order stabilization of LTI systems with time delay,” IEEE Trans. Automat. Control, vol. 54, no. 4, pp. 774–787, Apr. 2009. doi: 10.1109/TAC.2009.2014935
    [42]
    F. Padula and A. Visioli, “On the stabilizing PID controllers for integral processes,” IEEE Trans. Automat. Control, vol. 57, no. 2, pp. 494–499, Feb. 2012. doi: 10.1109/TAC.2011.2164821

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (315) PDF downloads(49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return